Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active compounds against Alzheimer’s disease: new insights thanks to simulations

12.01.2012
Various molecules have been synthesized that inhibit self-assembly of the amyloid beta peptide in vitro. This peptide is strongly linked to Alzheimer’s disease. Based on computer simulations, biochemists from the University of Zurich have recently shown how the active compounds and fragments of this disease-causing peptide interact with each other: it is the disordered structure of the peptide that determines the interactions with active compounds.

More than half of all cases of dementia in the elderly can be attributed to Alzheimer’s disease. Despite vast research efforts, an effective therapy has not been developed, and treatment consists of dealing with the symptoms.

Changes in brain tissues are a hallmark of Alzheimer’s. In affected individuals, small protein fragments known as amyloid beta peptides accumulate and are deposited in the gray brain matter. Researchers recently identified a series of synthetic compounds (inhibitors) that interfere with the self-assembly of the amyloid beta peptide in vitro; they influence both early stages and the transition to the characteristic amyloid fibrils. On a theoretical level, these compounds thus satisfy an initial condition for the development of an Alzheimer drug.

Peptide’s disorder determines interaction
In order to understand the interactions between the amyloid beta peptide and active compounds at a structural level, Marino Convertino, Andreas Vitalis, and Amedeo Caflisch from the University of Zurich’s Department of Biochemistry simulated these interactions on the computer. In doing so, they focused on a fragment of the peptide that is thought to control both interactions with inhibitors and progression of disease. Based on these simulations, the biochemists were able to identify a hierarchy of interaction patterns between the peptide and various active compounds. To their surprise, they discovered that the disordered structure of the peptide controls the interactions. “The peptide’s disorder and flexibility enable it to adapt to many basic structural frameworks,” explains Andreas Vitalis. Often it is only subparts of the molecules that mediate interactions on the compound side. However, even minimal changes to a compound may induce measurable changes to the peptide-compound interactions. “Design of active compounds that influence the amyloid beta peptide structurally in a specific manner will only be possible with the aid of high-resolution methods that are limited to one or a few molecules,” concludes Vitalis. In the next step, the researchers from the University of Zurich want to identify new classes of active substances with controllable properties that interact with the amyloid beta peptide.
Further reading:
Marino Convertino, Andreas Vialis, Amadeo Caflisch. Disordered Binding of Small Molecules to Aâ(12–28). The Journal of Biological Chemistry. October 3, 2011. doi: 10.1074/jbc.M111.285957

The study was funded by the Swiss National Science Foundation and University of Zurich research credit.

Contact:
Dr. Andreas Vitalis
Department of Biochemistry
University of Zurich
Tel.: +41 44 635 55 97
Email: a.vitalis@bioc.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>