Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active compounds against Alzheimer’s disease: new insights thanks to simulations

12.01.2012
Various molecules have been synthesized that inhibit self-assembly of the amyloid beta peptide in vitro. This peptide is strongly linked to Alzheimer’s disease. Based on computer simulations, biochemists from the University of Zurich have recently shown how the active compounds and fragments of this disease-causing peptide interact with each other: it is the disordered structure of the peptide that determines the interactions with active compounds.

More than half of all cases of dementia in the elderly can be attributed to Alzheimer’s disease. Despite vast research efforts, an effective therapy has not been developed, and treatment consists of dealing with the symptoms.

Changes in brain tissues are a hallmark of Alzheimer’s. In affected individuals, small protein fragments known as amyloid beta peptides accumulate and are deposited in the gray brain matter. Researchers recently identified a series of synthetic compounds (inhibitors) that interfere with the self-assembly of the amyloid beta peptide in vitro; they influence both early stages and the transition to the characteristic amyloid fibrils. On a theoretical level, these compounds thus satisfy an initial condition for the development of an Alzheimer drug.

Peptide’s disorder determines interaction
In order to understand the interactions between the amyloid beta peptide and active compounds at a structural level, Marino Convertino, Andreas Vitalis, and Amedeo Caflisch from the University of Zurich’s Department of Biochemistry simulated these interactions on the computer. In doing so, they focused on a fragment of the peptide that is thought to control both interactions with inhibitors and progression of disease. Based on these simulations, the biochemists were able to identify a hierarchy of interaction patterns between the peptide and various active compounds. To their surprise, they discovered that the disordered structure of the peptide controls the interactions. “The peptide’s disorder and flexibility enable it to adapt to many basic structural frameworks,” explains Andreas Vitalis. Often it is only subparts of the molecules that mediate interactions on the compound side. However, even minimal changes to a compound may induce measurable changes to the peptide-compound interactions. “Design of active compounds that influence the amyloid beta peptide structurally in a specific manner will only be possible with the aid of high-resolution methods that are limited to one or a few molecules,” concludes Vitalis. In the next step, the researchers from the University of Zurich want to identify new classes of active substances with controllable properties that interact with the amyloid beta peptide.
Further reading:
Marino Convertino, Andreas Vialis, Amadeo Caflisch. Disordered Binding of Small Molecules to Aâ(12–28). The Journal of Biological Chemistry. October 3, 2011. doi: 10.1074/jbc.M111.285957

The study was funded by the Swiss National Science Foundation and University of Zurich research credit.

Contact:
Dr. Andreas Vitalis
Department of Biochemistry
University of Zurich
Tel.: +41 44 635 55 97
Email: a.vitalis@bioc.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>