Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acoustic Phenomena Explain Why Boats and Animals Collide

10.12.2008
Despite protection policies to slow down boats in manatee-protection habitats, the number of injuries and deaths associated with collisions has reached record highs. Researchers have laid the groundwork for a sensory explanation for why manatees and other animals, including great whales, are hit repeatedly by boats. They have developed a novel device that addresses the root causes of these collisions.

Researchers at Florida Atlantic University have laid the groundwork for a sensory explanation for why manatees and other animals are hit repeatedly by boats. Last year, 73 manatees were killed by boats in Florida’s bays and inland waterways.

Marine authorities have responded to deaths from boat collisions by imposing low speed limits on boats. In spite of manatee protection policies that have been in effect for nearly two decades to slow down boats passing through manatee-protection habitats, the number of injuries and deaths associated with collisions has increased and reached record highs.

In an effort to reduce manatee deaths and injuries from boats, Dr. Edmund Gerstein, director of marine mammal research and behavior in FAU’s Charles E. Schmidt College of Science, set out in 1991 to investigate what might be the underlying cause for these collisions. Gerstein disagreed with the unsubstantiated assumptions, which wildlife officials had relied upon, that manatees could hear boats, but they were just too slow and could not learn to avoid boats.

“Manatees have the cognitive prowess to learn and remember as well as dolphins and killer whales,” said Gerstein. “Furthermore, when startled or frightened, manatees explode with a burst of power and can reach swimming speeds of up to 6.4 meters per second in an instant.”

Given that manatees have the cognitive ability to recognize danger and the physical prowess to evade boats, Gerstein sought to explore the answers to some simple questions. “After a manatee has been hit more than once (some have been hit up to 50 different times) why doesn't the animal learn to get out of the way?” “Is it possible that manatees are not aware or cannot hear the sounds of an approaching boat?"

Gerstein and his colleagues conducted rigorous, controlled underwater psychoacoustic (audiometric) studies to understand what sounds manatees can hear in their environment. After a comprehensive series of hearing studies, his research revealed that manatees cannot hear the dominant low frequency sounds of boats and that those sounds do not transmit well in shallow water. Furthermore, ambient noise in manatee habitats can conceivably mask the perception of many kinds of signals. Unlike dolphins, which can use active sonar to navigate and detect objects in the environment, manatees are passive listeners restricted to listening to their auditory landscape.

"It is ironic that slow speed zones result in quieter and lower frequency sounds which manatees can’t hear or locate in Florida’s murky waters,” said Gerstein. “Slow speed zones make sense in clear water where the boater and the manatee can see each other and therefore actively avoid encounters. However, in turbid waters where there is no visibility, slow speeds actually exacerbate the risks of collisions by making these boats inaudible to manatees and increasing the time it takes for a boat to now travel through manatee habitats thereby increasing the risk and opportunities for collisions to occur.”

With these issues in mind, Gerstein and his colleagues developed an acoustic alerting device specifically tailored to exploit the manatees’ hearing ability. The environmentally friendly device is narrowly focused in front of the boat so that only manatees in its direct path are alerted.

“The alarm emits a high-frequency signal which isn’t loud, doesn’t scare or harm manatees and doesn’t disturb the marine environment,” said Gerstein.

Gerstein has been testing this alarm in a NASA wildlife refuge where controlled studies are possible. He has reported that 100 percent of the controlled approaches toward manatees by a boat with the alarm have resulted in the manatees avoiding the boat up to 30 yards away. Without this alarm, only three percent of the manatees approached by the same boat moved to avoid the boat.

Manatees aren’t the only animals that collide with boats. Other passive-listening marine mammals, including great whales, are vulnerable to collisions when near the surface, where the risk of collisions with ships and boats is greatest or in shallow water. Gerstein and his colleagues are using the findings from their studies to help understand and reduce collisions in the open seas where great whales are regularly injured and often killed by large ships.

- FAU -

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>