Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acoustic Phenomena Explain Why Boats and Animals Collide

10.12.2008
Despite protection policies to slow down boats in manatee-protection habitats, the number of injuries and deaths associated with collisions has reached record highs. Researchers have laid the groundwork for a sensory explanation for why manatees and other animals, including great whales, are hit repeatedly by boats. They have developed a novel device that addresses the root causes of these collisions.

Researchers at Florida Atlantic University have laid the groundwork for a sensory explanation for why manatees and other animals are hit repeatedly by boats. Last year, 73 manatees were killed by boats in Florida’s bays and inland waterways.

Marine authorities have responded to deaths from boat collisions by imposing low speed limits on boats. In spite of manatee protection policies that have been in effect for nearly two decades to slow down boats passing through manatee-protection habitats, the number of injuries and deaths associated with collisions has increased and reached record highs.

In an effort to reduce manatee deaths and injuries from boats, Dr. Edmund Gerstein, director of marine mammal research and behavior in FAU’s Charles E. Schmidt College of Science, set out in 1991 to investigate what might be the underlying cause for these collisions. Gerstein disagreed with the unsubstantiated assumptions, which wildlife officials had relied upon, that manatees could hear boats, but they were just too slow and could not learn to avoid boats.

“Manatees have the cognitive prowess to learn and remember as well as dolphins and killer whales,” said Gerstein. “Furthermore, when startled or frightened, manatees explode with a burst of power and can reach swimming speeds of up to 6.4 meters per second in an instant.”

Given that manatees have the cognitive ability to recognize danger and the physical prowess to evade boats, Gerstein sought to explore the answers to some simple questions. “After a manatee has been hit more than once (some have been hit up to 50 different times) why doesn't the animal learn to get out of the way?” “Is it possible that manatees are not aware or cannot hear the sounds of an approaching boat?"

Gerstein and his colleagues conducted rigorous, controlled underwater psychoacoustic (audiometric) studies to understand what sounds manatees can hear in their environment. After a comprehensive series of hearing studies, his research revealed that manatees cannot hear the dominant low frequency sounds of boats and that those sounds do not transmit well in shallow water. Furthermore, ambient noise in manatee habitats can conceivably mask the perception of many kinds of signals. Unlike dolphins, which can use active sonar to navigate and detect objects in the environment, manatees are passive listeners restricted to listening to their auditory landscape.

"It is ironic that slow speed zones result in quieter and lower frequency sounds which manatees can’t hear or locate in Florida’s murky waters,” said Gerstein. “Slow speed zones make sense in clear water where the boater and the manatee can see each other and therefore actively avoid encounters. However, in turbid waters where there is no visibility, slow speeds actually exacerbate the risks of collisions by making these boats inaudible to manatees and increasing the time it takes for a boat to now travel through manatee habitats thereby increasing the risk and opportunities for collisions to occur.”

With these issues in mind, Gerstein and his colleagues developed an acoustic alerting device specifically tailored to exploit the manatees’ hearing ability. The environmentally friendly device is narrowly focused in front of the boat so that only manatees in its direct path are alerted.

“The alarm emits a high-frequency signal which isn’t loud, doesn’t scare or harm manatees and doesn’t disturb the marine environment,” said Gerstein.

Gerstein has been testing this alarm in a NASA wildlife refuge where controlled studies are possible. He has reported that 100 percent of the controlled approaches toward manatees by a boat with the alarm have resulted in the manatees avoiding the boat up to 30 yards away. Without this alarm, only three percent of the manatees approached by the same boat moved to avoid the boat.

Manatees aren’t the only animals that collide with boats. Other passive-listening marine mammals, including great whales, are vulnerable to collisions when near the surface, where the risk of collisions with ships and boats is greatest or in shallow water. Gerstein and his colleagues are using the findings from their studies to help understand and reduce collisions in the open seas where great whales are regularly injured and often killed by large ships.

- FAU -

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>