Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ACL reconstruction technique improves outcomes in pediatric patients

13.07.2012
A new study demonstrates the superiority of a specific technique to perform anterior cruciate ligament (ACL) reconstruction in children. In recent years, the number of ACL surgeries in pediatric athletes has skyrocketed.

The study, conducted by researchers at Hospital for Special Surgery (HSS) in New York City, shows that a technique called the All-Inside, All-Epiphyseal ACL Reconstruction (AE) provides great knee stability and effectively controls joint stress.

"The AE technique is not available except in a few select centers around the country including HSS," said Frank Cordasco, M.D., surgical director of the Ambulatory Surgery Center and member of the Sports Medicine and Shoulder Service at HSS. "We believe the AE should be the preferred procedure for ACL reconstruction in the skeletally immature." The study will be presented on July 13 at the annual meeting of the American Orthopaedic Society for Sports Medicine (AOSSM), held in Baltimore.

Twenty years ago, very few children or adolescents presented at doctors' offices with ACL injuries. Today, these injuries are common because children and young adolescents are participating in sports earlier in life and at a higher level of competition. Young athletes are also increasingly specializing in one sport, putting them at risk for overuse injuries once only seen in professional athletes. In addition, since the Title IX ban on sex discrimination in school sports, the number of female athletes has increased and females are more prone to ACL injury.

Performing ACL reconstruction in patients who are still growing is difficult. The ACL can be thought of as a rope that connects the thighbone to the shinbone. The rounded ends of the thighbone and shinbone are called epiphyses and the ACL dangles between them. Open growth plates are located directly behind the epiphyses in children and adolescents, but not in adults.

In an adult ACL reconstruction, the torn ligament is removed from the knee, holes are drilled through the ends of the thighbone and shinbone, and a tissue graft is inserted in place of the removed ligament. In this way, the reconstruction mimics the natural ACL footprint. ACL reconstruction is difficult in children because if an adult-type reconstruction were performed, the graft would cross the growth plates, potentially causing damage that can result in uneven limb lengths or angular deformities. Thus, for many years, ACL injuries in children were managed with benign neglect, or surgical procedures that were not anatomic and required large incisions to avoid injuring the growth plate. In recent years, however, clinicians realized that non-operative treatment resulted in damage to menisci and articular cartilage thereby leading to early arthritis. Advances in technology, instrumentation and techniques are now available which allow surgeons to perform the AE reconstruction without risk of injury to the growth plate. These procedures are more technically demanding and are available at only a few centers around the country including HSS.

In the study, researchers, including Dr. Cordasco and HSS pediatric orthopedic surgeon Daniel Green, M.D., compared two ACL reconstruction techniques for children that minimize contact with the growth plate: the AE technique and the over-the-top reconstruction (OT). In the OT, surgeons slide a graft through a hole drilled into the shinbone, similar to an adult ACL surgery, but the graft is then attached to the back of the thighbone. The OT requires an open incision and does not mimic the natural ACL footprint. In the AE, surgeons mimic the adult surgery, but the ligament is only attached to the epiphysis and does not cross into the growth plate. The AE is performed arthroscopically and mimics the natural ACL footprint. While the AE has been around for ten years, it has been drastically refined in the last few years, due to advances in arthroscopic technologies.

The researchers obtained ten human cadaver legs that had their ACLs intact. They fixed the legs firmly in cement and, using a robot, they put each of the legs through a series of motions to test knee stress and strain. They tested stability when the knee was pivoting, for example, and they measured contact stresses by delivering pressure to the leg and evaluating the stress experienced at different areas of the joint.

The investigators then removed the ACLs and performed the same set of experiments, to replicate an ACL insufficient patient. They then performed all-epiphyseal procedures in five of the legs and over-the-top reconstructions in the other five, performed the same stress and stability experiments, and then reversed the order, so that each leg underwent both procedures.

The goal of ACL reconstruction is to stabilize a joint enough so that an individual can participate in sport without damaging other knee structures, but not to stabilize the knee so much that it overconstrains the knee. "If we overconstrain a joint, whether it is a knee or shoulder, you lose motion, but more importantly, you can develop an arthritic condition," said Dr. Cordasco. "Obviously in a ten year old, if you have an overconstrained joint, that is going to mean that by the time they are 30 or 40, they might need a joint replacement."

The researchers found that the AE and OT performed similarly, but the AE performed better when the knee was at 15 degrees, which is commonly experienced by individuals who are running down a field. In the experiments, the investigators actually used a thicker graft in the OT surgeries than would be used in actual patients, because they wanted to use the same size grafts in both AE and OT surgeries. Thus, in actual patients, OT surgeries would likely have resulted in worse outcomes.

While other studies have compared joint stability (kinematics) of the two procedures, this is the first to study contact stresses. "Both reconstructions improved the kinematics and contact stresses compared to the deficient state, but neither reconstruction completely restored normal kinematics and contact stresses," said Dr. Cordasco. "The OT had significantly higher contact stresses at 15% of flexion compared to the AE. This is important because most field and court sports involve knee function close to this position. The OT requires an arthrotomy, meaning an open incision, and therefore has increased morbidity with associated soft tissue trauma. We believe the AE is preferable in the pediatric and young adolescent population."

The study has been nominated for the 2012 Herodicus Award given annually by the Herodicus Society at the AOSSM meeting for the best paper submitted by an orthopedic resident or sports medicine fellow. Moira McCarthy, M.D., a fifth year orthopedic surgery resident at HSS will present the paper at 8:49 a.m. on July 13. Other HSS authors involved in the study were Scott Tucker, M.Eng., and Carl Imhauser, Ph.D.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 2 in rheumatology, No. 19 in neurology and No. 16 in geriatrics by U.S. News & World Report (2012-13), and is the first hospital in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center three consecutive times. HSS has one of the lowest infection rates in the country. From 2007 to 2011, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. HSS is a member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College and as such all Hospital for Special Surgery medical staff are faculty of Weill Cornell. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at www.hss.edu.

Phyllis Fisher |
Further information:
http://www.hss.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>