Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidity Can Change Cell Membrane Properties

02.10.2013
Of all the amazing technologies humans have developed, none has matched the complexity of the fundamental building block of nature: the living cell. And none of the cell’s activities would be possible without thin lipid membranes, or bilayers,that separate its parts and regulate their functions.

Understanding and controlling bilayers’ properties is vital for advances in biology and biotechnology. Now an interdisciplinary team of Northwestern University researchers has determined how to control bilayers’ crystallization by altering the acidity of their surroundings.


Changes in the packing of the tails into a hexagonal, rectangular-C, or rectangular-P lattice are observed at various pH levels.

The research, published September 24 in the Proceedings of the National Academy of Sciences, sheds light on cell function and could enable advances in drug delivery and bio-inspired technology.

“In nature, living things function at a delicate balance: acidity, temperature, all its surroundings must be within specific limits, or they die,” said co-author Monica Olvera de la Cruz, Lawyer Taylor Professor of Materials Science and Engineering, Chemistry, and (by courtesy) Chemical and Biological Engineering at Northwestern’s McCormick School of Engineering. “When living things can adapt, however, they are more functional. We wanted to find the specific set of conditions under which bilayers, which control so much of the cell, can morph in nature.”The research, published September 24 in the Proceedings of the National Academy of Sciences, sheds light on cell function and could enable advances in drug delivery and bio-inspired technology.Understanding and controlling bilayers’ properties is vital for advances in biology and biotechnology. Now an interdisciplinary team of Northwestern University researchers has determined how to control bilayers’ crystallization by altering the acidity of their surroundings.

By taking advantage of the charge in the molecules’ head groups, the Northwestern researchers developed a new way to modify the membrane’s physical properties. They began by co-assembling dilysine (+2) and carboxylate (-1) amphiphile molecules of varying tail lengths into bilayer membranes at different pH levels, which changed the effective charge of the heads. Bilayers are made of two layers of amphiphile molecules — molecules with both water-loving and water-hating properties — that form a crystalline shell around its contents. Shaped like a lollipop, amphiphile molecules possess a charged, water-loving (hydrophilic) head and a water-repelling (hydrophobic) tail; the molecules forming each layer line up tail-to-tail with the heads forming the exterior of the membrane. The density and arrangement of the molecules determine the membrane’s porosity, strength, and other properties.

Then, using x-ray scattering technology at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) at Argonne National Laboratory’s Advanced Photon Source, the researchers analyzed the resulting crystallization formed by the bilayers’ molecules.

(To produce electron microscope images of membrane structures, researchers previously have frozen them, but this process is labor-intensive and changes the structural fidelity, which makes it less relevant for understanding membrane assembly and behavior under physiological conditions as carried out inside the human body.)

The Northwestern researchers found that most molecules did not respond to a change in acidity. But those that possessed a critical tail length — a measure that correlates to the molecules’ level of hydrophylia — the charge of the molecules’ heads changed to the extent that their two-dimensional crystallization morphed from a periodic rectangular-patterned lattice (found in more basic solutions) to a hexagonal lattice (found in more acidic solutions). Shells with a higher symmetry, such as hexagonal, are stronger and less brittle than those with lesser symmetry. The change in pH also altered the bilayers’ thickness and the compactness of the molecules.

Changing the density and spacing of molecules within membranes could help researchers control the encapsulation and release efficiency of molecules inside a vesicle.

The PNAS paper is titled “Crystalline Polymorphism Induced by Charge Regulation in Ionic Membranes.”

The research was a collaboration between three Northwestern labs, spanning five interdisciplinary departments. Other authors were Samuel I. Stupp, Michael J. Bedzyk; first author Cheuk-Yui Leung, a PhD candidate in the Department of Physics and Astronomy at Northwestern’s Judd A. and Marjorie Weinberg College of Arts and Sciences; Liam C. Palmer, a postdoctoral researchers in Weinberg’s Department of Chemistry; and Sumit Kewalramani and Baofu Qiao, postdoctoral researchers in McCormick’s Department of Materials Science and Engineering.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>