Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aboriginal kids can count without numbers

19.08.2008
Knowing the words for numbers is not necessary to be able to count, according to a new study of aboriginal children by UCL (University College London) and the University of Melbourne.

The study of the aboriginal children – from two communities which do not have words or gestures for numbers – found that they were able to copy and perform number-related tasks. The findings, published in the journal PNAS, suggest that we possess an innate mechanism for counting, which may develop differently in children with dyscalculia.

Professor Brian Butterworth, lead author from the UCL Institute of Cognitive Neuroscience, says: “Recently, an extreme form of linguistic determinism has been revived which claims that counting words are needed for children to develop concepts of numbers above three. That is, to possess the concept of ‘five’ you need a word for five. Evidence from children in numerate societies, but also from Amazonian adults whose language does not contain counting words, has been used to support this claim.

“However, our study of aboriginal children suggests that we have an innate system for recognizing and representing numerosities – the number of objects in a set – and that the lack of a number vocabulary should not prevent us from doing numerical tasks that do not require number words.”

The study looked at Australian indigenous populations, who have very restricted vocabularies for numbers. Although gestures are used to communicate in some indigenous Australia societies, there appear to be no gestures for numbers. The study worked with children aged four to seven from two indigenous communities: one on the edge of the Tanami Desert about 400 km north west of Alice Springs where Warlpiri is spoken; the other on Groote Eylandt in the Gulf of Carpentaria, where the local language is Anindilyakwa. Both have words for one, two, few and many, though in Anindilyakwa there are ritual words for numbers to 20, but children will not know these. The team also worked with an English-speaking indigenous group in Melbourne.

Professor Brian Butterworth continues: “In our tasks we couldn’t, for example, ask questions such as “How many?” or “Do these two sets have the same number of objects?” We therefore had to develop special tasks. For example, children were asked to put out counters that matched the number of sounds made by banging two sticks together. Thus, the children had to mentally link numerosities in two different modalities, sounds and actions, which meant they could not rely on visual or auditory patterns alone. They had to use an abstract representation of, for example, the fiveness of the bangs and the fiveness of the counters. We found that Warlpiri and Anindilyakwa children performed as well as or better than the English-speaking children on a range of tasks, and on numerosities up to nine, even though they lacked number words.

“Thus, basic numerical concepts do indeed appear to depend on an innate mechanism. This may help explain why children in numerate cultures with developmental dyscalculia find it so difficult to learn arithmetic. Although they have plenty of formal and informal opportunities to learn to count with words and do arithmetic, the innate mechanism on which skilled arithmetic is based may have developed atypically.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>