Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aboriginal kids can count without numbers

19.08.2008
Knowing the words for numbers is not necessary to be able to count, according to a new study of aboriginal children by UCL (University College London) and the University of Melbourne.

The study of the aboriginal children – from two communities which do not have words or gestures for numbers – found that they were able to copy and perform number-related tasks. The findings, published in the journal PNAS, suggest that we possess an innate mechanism for counting, which may develop differently in children with dyscalculia.

Professor Brian Butterworth, lead author from the UCL Institute of Cognitive Neuroscience, says: “Recently, an extreme form of linguistic determinism has been revived which claims that counting words are needed for children to develop concepts of numbers above three. That is, to possess the concept of ‘five’ you need a word for five. Evidence from children in numerate societies, but also from Amazonian adults whose language does not contain counting words, has been used to support this claim.

“However, our study of aboriginal children suggests that we have an innate system for recognizing and representing numerosities – the number of objects in a set – and that the lack of a number vocabulary should not prevent us from doing numerical tasks that do not require number words.”

The study looked at Australian indigenous populations, who have very restricted vocabularies for numbers. Although gestures are used to communicate in some indigenous Australia societies, there appear to be no gestures for numbers. The study worked with children aged four to seven from two indigenous communities: one on the edge of the Tanami Desert about 400 km north west of Alice Springs where Warlpiri is spoken; the other on Groote Eylandt in the Gulf of Carpentaria, where the local language is Anindilyakwa. Both have words for one, two, few and many, though in Anindilyakwa there are ritual words for numbers to 20, but children will not know these. The team also worked with an English-speaking indigenous group in Melbourne.

Professor Brian Butterworth continues: “In our tasks we couldn’t, for example, ask questions such as “How many?” or “Do these two sets have the same number of objects?” We therefore had to develop special tasks. For example, children were asked to put out counters that matched the number of sounds made by banging two sticks together. Thus, the children had to mentally link numerosities in two different modalities, sounds and actions, which meant they could not rely on visual or auditory patterns alone. They had to use an abstract representation of, for example, the fiveness of the bangs and the fiveness of the counters. We found that Warlpiri and Anindilyakwa children performed as well as or better than the English-speaking children on a range of tasks, and on numerosities up to nine, even though they lacked number words.

“Thus, basic numerical concepts do indeed appear to depend on an innate mechanism. This may help explain why children in numerate cultures with developmental dyscalculia find it so difficult to learn arithmetic. Although they have plenty of formal and informal opportunities to learn to count with words and do arithmetic, the innate mechanism on which skilled arithmetic is based may have developed atypically.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>