Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Zap of Cold Plasma Reduces Harmful Bacteria on Raw Chicken

06.02.2012
A new study by food safety researchers at Drexel University demonstrates that plasma can be an effective method for killing pathogens on uncooked poultry. The proof-of-concept study was published in the January issue of the Journal of Food Protection.

Although recent high-profile outbreaks of foodborne illness have involved contaminated fresh produce, the most common source of harmful bacteria in food is uncooked poultry and other meat products. The bacteria responsible for most foodborne illnesses, Campylobacter and Salmonella, are found on upwards of 70 percent of chicken meat tested.

Treating raw meat products to remove pathogens before they reach a consumer’s home can reduce the risk of cross contamination during food preparation, according to senior author Dr. Jennifer Quinlan, an assistant professor in Drexel’s College of Nursing and Health Professions. “If you could reduce contamination on the raw chicken, then you wouldn’t have it in the kitchen,” Quinlan said.

Past studies have shown that plasma could successfully reduce pathogens on the surface of fruits and vegetables without cooking them.

The value of using plasma “is that it is non-thermal, so there is no heat to cook or alter the way the food looks,” said lead author Brian Dirks, a graduate student in the College of Arts and Sciences. Dirks and Quinlan worked with researchers from the University’s Anthony J. Drexel Plasma Institute to test the use of plasma for poultry.

In the Drexel study, raw chicken samples contaminated with Salmonella enterica and Campylobacter jejuni bacteria were treated with plasma for varying periods of time. Plasma treatment eliminated or nearly eliminated bacteria in low levels from skinless chicken breast and chicken skin, and significantly reduced the level of bacteria when contamination levels were high.

The researchers also tested using plasma to treat samples of bacteria grown on agar, and demonstrated that antibiotic-resistant strains of bacteria were as susceptible to plasma as the wild-type strains.

Plasma, known as the “fourth state of matter” (after solid, liquid and gas), is a high-energy, charged mixture of gaseous atoms, ions and electrons. Plasma has a wide range of potential applications including energy production and control, biomedical treatments and environmental remediation.

Quinlan described the plasma treatment of poultry in this study as “proof of concept.” Current plasma technology is expensive relative to the narrow cost margins involved in food production, and the technology is not currently being developed for processing poultry on a large scale.

If plasma technology becomes cost-effective for use in treating poultry, it may be used in conjunction with existing methods to reduce pathogens, Dirks said, and it may also help prolong the shelf-life of raw chicken if it can be honed to remove more microorganisms responsible for spoilage.

“Until these technologies are more fully developed, consumers should assume that raw poultry has pathogens on it and take care to prevent infection,” Quinlan said. “That means cooking thoroughly and making sure not to cross contaminate when handling uncooked meat and poultry.”

Quinlan holds a a Ph.D. in food microbiology from North Carolina State University and bachelor’s and master’s degrees in food science from Rutgers University. Her research focuses on the microbiological quality and safety of food. Her ongoing work focuses on safe consumer handling of food.

The A.J. Drexel Plasma Institute recently received a $1 million grant from the W.M. Keck Foundation to expand its plasma research.

Full citation: Dirks, B.P., Dobrynin, D., Fridman, G., Mukhn, Y., Fridman, A., & Quinlan, J.J. Treatment of Raw Poultry with Nonthermal Dielectric Barrier Discharge Plasma To Reduce Campylobacter jejuni and Salmonella enterica. Journal of Food Protection. DOI: 10.4315/0362-028X.JFP-11-153.

Rachel Ewing | Newswise Science News
Further information:
http://www.drexel.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>