Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new system for determining the dynamic behavior of a bus body structure

19.01.2010
One of the accidents in which a bus can be involved is bus rollover. In these cases, the body structure is essential for the protection of the passengers, and the scientists analyze how to improve the structure’s behavior when dealing with an event of this kind.

Along these lines, the study carried out by the researchers from the UC3M Instituto de Seguridad de los Vehículos Automóviles (Automobile Safety Institute) (ISVA) proposes a mathematic model to estimate the vibration frequencies of the bus structure itself.

What is remarkable about it, according to one of the authors of the study, Antonio Gauchía, from the UC3M Mechanical Engineering Department, is its simplicity: “There are other numerical techniques such as the finite element method, to determine the vibration’s own frequency, but this model allows it to be done in a faster and simpler fashion.”

The idea behind this research arose from the need to improve the behavior of bus body structure, and especially to increase the torsional rigidity, “In some vehicles headlights that break because they are not rigid enough have been observed”, according to Professor Gauchía. “Moreover”, he continued, “it has been observed that this factor is particularly relevant in the increase of the rollover threshold, and that as such, results in greater vehicle safety. Several factors are involved in obtaining a resistant rigid torsion structure, such as the dimensions of the cross-section of the profiles that make up the structure, the material of the profiles and the availability of the same in the bus structure.

Real applications.

“This research study, as well as others that we are carrying out along these same lines, have direct application in the bus sector, since they not only improve safety but also evolve from the idea of an oversized structure to a body structure somewhat smaller in design, in which variables such as weight, consumption, torsional rigidity, etc., are taken into account”, explained the ISVA Director, UC3M Full Professor Vicente Díaz, one of the authors of the study, which was recently published in the International Journal of Heavy Vehicle Systems.

In driving conditions, vehicle rollover depends on a parameter (known as “rollover threshold”) which is determined by the lateral acceleration from which the vehicle initiates the process. In this way, the larger the parameter, the greater the lateral acceleration that the vehicle would have to be subject to in order to make it roll over, thus, making the vehicle safer. “A body structure with high torsional rigidity increases the rollover limit and in addition offers a higher level of safety,” Gauchía pointed out. On the other hand, if the rollover occurs and the body structure hits the ground, it should be sufficiently resistant so as to protect the passengers. Concretely, the Reglamento de Ginebra (Geneva Regulation) R66 and la Directiva (Guideline) 2001/85/CE establish that the bus structure be sufficiently rigid so as to maintain a space inside the bus, termed the survival space, in which no object can enter or exit.

Full bibliographic information
Títle: Simplified dynamic torsional model of an urban bus
Authors: Antonio Gauchía Babé, Maria Jesús López Boada, Beatriz López Boada y Vicente Díaz López
Review: International Journal of Heavy Vehicle Systems 16 (3): 341-353 2009
ISSN: 1744-232X

Ana María Herrera | alfa
Further information:
http://www.uc3m.es
http://www.uc3m.es/portal/page/portal/actualidad_cientifica/noticias/carroceria_autobuses

Further reports about: Heavy Vehicle Systems UC3M Vehicle bus body structure rollover limit

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>