Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new system for determining the dynamic behavior of a bus body structure

19.01.2010
One of the accidents in which a bus can be involved is bus rollover. In these cases, the body structure is essential for the protection of the passengers, and the scientists analyze how to improve the structure’s behavior when dealing with an event of this kind.

Along these lines, the study carried out by the researchers from the UC3M Instituto de Seguridad de los Vehículos Automóviles (Automobile Safety Institute) (ISVA) proposes a mathematic model to estimate the vibration frequencies of the bus structure itself.

What is remarkable about it, according to one of the authors of the study, Antonio Gauchía, from the UC3M Mechanical Engineering Department, is its simplicity: “There are other numerical techniques such as the finite element method, to determine the vibration’s own frequency, but this model allows it to be done in a faster and simpler fashion.”

The idea behind this research arose from the need to improve the behavior of bus body structure, and especially to increase the torsional rigidity, “In some vehicles headlights that break because they are not rigid enough have been observed”, according to Professor Gauchía. “Moreover”, he continued, “it has been observed that this factor is particularly relevant in the increase of the rollover threshold, and that as such, results in greater vehicle safety. Several factors are involved in obtaining a resistant rigid torsion structure, such as the dimensions of the cross-section of the profiles that make up the structure, the material of the profiles and the availability of the same in the bus structure.

Real applications.

“This research study, as well as others that we are carrying out along these same lines, have direct application in the bus sector, since they not only improve safety but also evolve from the idea of an oversized structure to a body structure somewhat smaller in design, in which variables such as weight, consumption, torsional rigidity, etc., are taken into account”, explained the ISVA Director, UC3M Full Professor Vicente Díaz, one of the authors of the study, which was recently published in the International Journal of Heavy Vehicle Systems.

In driving conditions, vehicle rollover depends on a parameter (known as “rollover threshold”) which is determined by the lateral acceleration from which the vehicle initiates the process. In this way, the larger the parameter, the greater the lateral acceleration that the vehicle would have to be subject to in order to make it roll over, thus, making the vehicle safer. “A body structure with high torsional rigidity increases the rollover limit and in addition offers a higher level of safety,” Gauchía pointed out. On the other hand, if the rollover occurs and the body structure hits the ground, it should be sufficiently resistant so as to protect the passengers. Concretely, the Reglamento de Ginebra (Geneva Regulation) R66 and la Directiva (Guideline) 2001/85/CE establish that the bus structure be sufficiently rigid so as to maintain a space inside the bus, termed the survival space, in which no object can enter or exit.

Full bibliographic information
Títle: Simplified dynamic torsional model of an urban bus
Authors: Antonio Gauchía Babé, Maria Jesús López Boada, Beatriz López Boada y Vicente Díaz López
Review: International Journal of Heavy Vehicle Systems 16 (3): 341-353 2009
ISSN: 1744-232X

Ana María Herrera | alfa
Further information:
http://www.uc3m.es
http://www.uc3m.es/portal/page/portal/actualidad_cientifica/noticias/carroceria_autobuses

Further reports about: Heavy Vehicle Systems UC3M Vehicle bus body structure rollover limit

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>