Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new system for determining the dynamic behavior of a bus body structure

19.01.2010
One of the accidents in which a bus can be involved is bus rollover. In these cases, the body structure is essential for the protection of the passengers, and the scientists analyze how to improve the structure’s behavior when dealing with an event of this kind.

Along these lines, the study carried out by the researchers from the UC3M Instituto de Seguridad de los Vehículos Automóviles (Automobile Safety Institute) (ISVA) proposes a mathematic model to estimate the vibration frequencies of the bus structure itself.

What is remarkable about it, according to one of the authors of the study, Antonio Gauchía, from the UC3M Mechanical Engineering Department, is its simplicity: “There are other numerical techniques such as the finite element method, to determine the vibration’s own frequency, but this model allows it to be done in a faster and simpler fashion.”

The idea behind this research arose from the need to improve the behavior of bus body structure, and especially to increase the torsional rigidity, “In some vehicles headlights that break because they are not rigid enough have been observed”, according to Professor Gauchía. “Moreover”, he continued, “it has been observed that this factor is particularly relevant in the increase of the rollover threshold, and that as such, results in greater vehicle safety. Several factors are involved in obtaining a resistant rigid torsion structure, such as the dimensions of the cross-section of the profiles that make up the structure, the material of the profiles and the availability of the same in the bus structure.

Real applications.

“This research study, as well as others that we are carrying out along these same lines, have direct application in the bus sector, since they not only improve safety but also evolve from the idea of an oversized structure to a body structure somewhat smaller in design, in which variables such as weight, consumption, torsional rigidity, etc., are taken into account”, explained the ISVA Director, UC3M Full Professor Vicente Díaz, one of the authors of the study, which was recently published in the International Journal of Heavy Vehicle Systems.

In driving conditions, vehicle rollover depends on a parameter (known as “rollover threshold”) which is determined by the lateral acceleration from which the vehicle initiates the process. In this way, the larger the parameter, the greater the lateral acceleration that the vehicle would have to be subject to in order to make it roll over, thus, making the vehicle safer. “A body structure with high torsional rigidity increases the rollover limit and in addition offers a higher level of safety,” Gauchía pointed out. On the other hand, if the rollover occurs and the body structure hits the ground, it should be sufficiently resistant so as to protect the passengers. Concretely, the Reglamento de Ginebra (Geneva Regulation) R66 and la Directiva (Guideline) 2001/85/CE establish that the bus structure be sufficiently rigid so as to maintain a space inside the bus, termed the survival space, in which no object can enter or exit.

Full bibliographic information
Títle: Simplified dynamic torsional model of an urban bus
Authors: Antonio Gauchía Babé, Maria Jesús López Boada, Beatriz López Boada y Vicente Díaz López
Review: International Journal of Heavy Vehicle Systems 16 (3): 341-353 2009
ISSN: 1744-232X

Ana María Herrera | alfa
Further information:
http://www.uc3m.es
http://www.uc3m.es/portal/page/portal/actualidad_cientifica/noticias/carroceria_autobuses

Further reports about: Heavy Vehicle Systems UC3M Vehicle bus body structure rollover limit

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>