Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study of strong ground motion may show need to modify building codes

08.12.2011

"In recent decades, population growth and scarcity of undeveloped metropolitan land have changed urban land use patterns and placed an increasing number of people and infrastructure in areas susceptible to topographic effects during earthquakes," said Adrian Rodriguez-Marek, at Virginia Tech.

"A major impediment towards understanding and realistically modeling topographic effects has been the lack of a statistically significant number of seismic recordings from densely instrumented sites with topographic features," Rodriguez-Marek added.

New testing conducted in a steep, mountainous region of Utah, using mining induced events, is providing a new set of data necessary for better predictions.

The testing is part of a large National Science Foundation (NSF) funded project involving five institutions across the United States, with Rodriguez-Marek of Virginia Tech serving as the principal investigator. This project focuses on increasing the understanding of the effects of surface topography on earthquake ground motions and seismic risk. The goal of the project is to develop design-ready tools to account for the effect of topography on ground motions.

In addition to Virginia Tech, the University of Washington, Georgia Tech, the University of Arkansas, and the University North Carolina at Charlotte are also participants. The project uses the Network for Earthquake Engineering Simulation (NEES) equipment sites at the University of California at Davis and at the University of Texas at Austin.

The first recordings included more than 50 mining-induced seismic events. Researchers from the University of Arkansas and the University of Texas at Austin gathered this first data.

According to Rodriguez-Marek, when the study is completed, researchers will have the necessary information to "modify building codes and to improve safety in the building environment."

Hillsides, ridges, and canyons are examples of sites where researchers do not have current reliable data to know how seismic shaking will be impacted by the ground features.

Although researchers have documented effects through observations of damage and the collapse of structures near the top of steep hills or ridges, "proper quantification of these effects" has not occurred because the areas did not have "densely-instrumented sites to record data," Rodriguez-Marek explained.

The test site in Utah stood about 2,000 feet above the long-wall mining activities of Deer Creek Coal Mine. The researchers placed 13, three-component sensors in a 3-D array over the ridge and hillside. Data was collected 24 hours a day for seven consecutive days. The 50 seismic events represented the first phase of a multiphase project. Additional data will be gathered at the Utah site this summer, and from tests at a geotechnical centrifuge at the University of California at Davis.

"As real earthquakes are infrequent and unpredictable, the shallow and predictable seismic activity induced by the stress relief that results from long-wall mining provides a good source of seismic energy for this study," Rodriguez-Marek said.

"Preliminary results clearly show higher ground motion intensity near the crest or peak of the slope," he added. The early data was used to calibrate mathematical models of the effects and to design the second phase of testing that occurred in the summer of 2011. Results are still being processed.

This NSF study includes a new bridge to the doctorate program geared toward increased participation and education of Hispanic students in the field of earthquake engineering.

"We hope to use our approach and collaboration among universities to serve as a model for increasing diversity in large, collaborative science, engineering, and technology research projects. Students from the University of Puerto Rico at Mayaguez have participated in summer studies at the University of Arkansas, and one student is currently enrolled at the University of North Carolina at Charlotte," Rodriguez-Marek said.

The College of Engineering at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college's 6,000 undergraduates benefit from an innovative curriculum that provides a "hands-on, minds-on" approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Related Links

* James Martin to head up federal study of East Coast earthquake<http://www.vtnews.vt.edu/articles/2011/09/090111-engineering-jamesmartinearthquake.html> (http://www.vtnews.vt.edu/articles/2011/09/090111-engineering-jamesmartinearthquake.html)

* Virginia Tech's Russ Green to lead government team to New Zealand earthquake area<http://www.vtnews.vt.edu/articles/2011/03/030211-engineering-greennewzealandearthquake.html> (http://www.vtnews.vt.edu/articles/2011/03/030211-engineering-greennewzealandearthquake.html)

This story can be found on the Virginia Tech News website:
http://www.vtnews.vt.edu/articles/2011/12/120811-engineering-motionbuildingcodes.html

Lynn A. Nystrom | VT News
Further information:
http://www.eng.vt.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>