Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study points to the importance of seeking new pine varieties resistant to climate change

20.04.2012
The radiata pine is the tree species par excellence in the Basque Country's forests.

Like other types of pine, the lack of water is one of the factors having the greatest effect on its survival and productivity. Until now, the Basque Country's high, steady rainfall has encouraged the cultivation and good productivity of this species.

This situation could change over the coming years if, in line with the predictions of climate change, average temperatures rise and droughts become more frequent and intense. So, new varieties of the radiata pine that are more resistant to the effects of climate change will have to be introduced. It is significant that the Basque Country's radiata pine should have been one of the ecotypes that has suffered most from the lack of water.

Introducing varieties of radiata pine that withstand drought better would not have any negative repercussions on the biodiversity existing in the Basque Country, as it would simply be a case of substituting one variety for another. The research has a significant repercussion for the timber industry in the Basque Country, as the radiata pine is one of its main crops due to the high productivity and quality of its timber. The sector can take into consideration the most suitable varieties within its programmes for improvement.

In order to simulate the anticipated scenario of an increased water shortage and its impact on the survival of forestland, Nuria De Diego, a PhD holder thanks to a grant provided by the Department for the Environment, Spatial Planning, Agriculture and Fisheries of the Government of the Basque Autonomous Community, together with specialists from Neiker-Tecnalia and the Department of Plant Biology and Ecology of the UPV/EHU-University of the Basque Country, have evaluated the response to situations of water stress of various ecotypes or varieties of radiata pine from different climate and geographical zones worldwide. The study carried out has been defended under the title: Respuesta a la sequía de Pinus radiata D. Don y su implicación en los procesos de tolerancia (Response to drought of Pinus radiata D. Don and its implications for tolerance processes). Part of the research done by De Diego is due to be published shortly in one of the most important journals existing on forestry: Tree Physiology.

In this study, apart from working with the radiata pine native to the Basque Country, other ecotypes from Australia and New Zealand were also used. The different varieties were exposed to a drought cycle of one month and were rehydrated to assess their capacity to recover. They were then subjected to a second cycle without water to see whether their behaviour response to the lack of water in fact improved due to the hardening of the plants. After the second cycle, the research confirmed that all the varieties had become more drought tolerant, their resistance ranging between seven and eleven weeks, depending on the varieties used. What explains the greater drought tolerance of the radiata pine that has been subjected to water stress beforehand is the fact that the pine manages to develop various defence mechanisms in this situation, like an increase in osmotic adjustment, greater stability in cell membranes, and even a reduction in the transpiration rate; these are processes regulated by various hormonal signals which also varied across the different ecotypes.

Within the varieties studied, the research detected that the Basque Country's radiata pine ecotype was among the ones that displayed the least drought tolerance and hardening capacity. This low capacity for adaptation leads one to think that an upsurge in the atmospheric conditions brought about by climate change will cause a large proportion of the Basque Country's pinewood stocks to sustain considerable damage.

The ecotype that best reflected the capacity to acclimatise during the study was one of the ones native to New Zealand; specifically, a variety that is a cross between the radiata and cedrosensis pine varieties (P. radiata var. radiata x cedrosensis.) The explanation for its better acclimatisation could be found in the fact that this variety has learnt throughout many generations of individuals to develop a greater capacity to respond to drought situations, since it has been cultivated in conditions of lower rainfall.

The cedrosensis variety originated in Cedros Island (Baja California, USA). Furthermore, the samples analysed came from New Zealand from an area of low rainfall; that is why their seeds produce trees that need little water to grow. The remaining varieties studied and their origins were as follows: P. radiata var. binata (New Zealand), P. radiata var. radiata (Basque Country), P. radiata var. radiata (New Zealand), P. radiata var. radiata (Australia), and in which a hybrid of the P. radiata and P. attenuata (New Zealand) was also included as the tolerance model, due to the already well-known resistance to drought of the P. attenuata.

This study made use of a large number of non-destructive, innovative techniques and analyses. These were conducted at the Neiker-Tecnalia Department of Biotechnology and at the Department of Plant Biology and Ecology and General Services (SGIKER) of the Faculty of Pharmacy of the UPV/EHU, and had the collaboration of other national research centres.

Scientific importance and practical contributions

The research carried out by De Diego has in fact shown that the radiata pine is hardened by drought and that, depending on the varieties, its resistance can be doubled or tripled with respect to other plants that have not been subjected to hardening processes. It has also confirmed the different response to drought among varieties, which would be of great interest in plant improvement programmes.

These facts can help to improve the response to drought of this species. So the radiata pine, besides improving its adaptation to climate change, could improve its chances of survival and adaptation during transplanting from the nursery to the natural environment, a particularly delicate moment for planting success.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>