Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A safer, more effective morphine may be possible with Indiana University discovery

25.03.2011
An orphan drug originally used for HIV treatment has been found to short-circuit the process that results in additional sensitivity and pain from opioid use. The study by researchers at the Indiana University School of Medicine is reported in the March 25, 2011 issue of Brain, Behavior and Immunity.

The researchers say the finding in animal models may ultimately make morphine a safer and more effective drug.

Traditionally opioids were used to relieve pain following surgery, from cancer and at the end of life. Today opioids are used widely for chronically painful conditions like osteoarthritis and back pain and may need to be prescribed for decades.

Morphine, the gold standard for controlling moderate to severe pain, has debilitating side effects including reduced respiration, constipation, itching and addiction. Patients also develop a tolerance to morphine which can lead to a complicated spiral.

"In addition to the recognized side effects, morphine actually creates sensitivity and causes more pain through inducing an inflammatory response in the body," said first author Natalie Wilson, a National Science Foundation Fellow at the IU School of Medicine.

This increased sensitivity is clinically known as opioid-induced hyperalgesia (OIH). Frequently, patients receiving opioids for pain control may actually become more sensitive to certain painful stimuli necessitating an increased opioid dosage. OIH may also represent one of many reasons for declining levels of analgesia while receiving opioids or a worsening pain syndrome.

"The drug itself is producing its own new pain," said Fletcher A. White, Ph.D., Vergil K. Stoelting Professor of Anesthesia and director of Anesthesia Research at the IU School of Medicine. "I tend to view it as an injury as it appears to be creating another pain."

Dr. White explained that morphine sets into motion a cascade of events, one of which is to increase molecular communication to and from the nerves by a protein known as CXCR4. This increase in CXCR4 signaling contributes to a neuroinflammatory response causing increased sensitivity and additional pain.

Drs. Wilson and White and colleagues administered AMD3100, an orphan drug known to block the CXCR4 response, to rats. By halting the signaling process, the researchers interrupted the OIH response, Dr. White explained. "If this translates appropriately in people, this application would likely make morphine a safer, more effective drug for chronic pain control."

The research was funded by the National Institute on Drug Abuse.

Co-authors are Richard J. Miller, Ph.D., and Hosung Jung, Ph.D., both molecular pharmacologist at Northwestern University.

Mary L. Hardin | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>