Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A safer, more effective morphine may be possible with Indiana University discovery

25.03.2011
An orphan drug originally used for HIV treatment has been found to short-circuit the process that results in additional sensitivity and pain from opioid use. The study by researchers at the Indiana University School of Medicine is reported in the March 25, 2011 issue of Brain, Behavior and Immunity.

The researchers say the finding in animal models may ultimately make morphine a safer and more effective drug.

Traditionally opioids were used to relieve pain following surgery, from cancer and at the end of life. Today opioids are used widely for chronically painful conditions like osteoarthritis and back pain and may need to be prescribed for decades.

Morphine, the gold standard for controlling moderate to severe pain, has debilitating side effects including reduced respiration, constipation, itching and addiction. Patients also develop a tolerance to morphine which can lead to a complicated spiral.

"In addition to the recognized side effects, morphine actually creates sensitivity and causes more pain through inducing an inflammatory response in the body," said first author Natalie Wilson, a National Science Foundation Fellow at the IU School of Medicine.

This increased sensitivity is clinically known as opioid-induced hyperalgesia (OIH). Frequently, patients receiving opioids for pain control may actually become more sensitive to certain painful stimuli necessitating an increased opioid dosage. OIH may also represent one of many reasons for declining levels of analgesia while receiving opioids or a worsening pain syndrome.

"The drug itself is producing its own new pain," said Fletcher A. White, Ph.D., Vergil K. Stoelting Professor of Anesthesia and director of Anesthesia Research at the IU School of Medicine. "I tend to view it as an injury as it appears to be creating another pain."

Dr. White explained that morphine sets into motion a cascade of events, one of which is to increase molecular communication to and from the nerves by a protein known as CXCR4. This increase in CXCR4 signaling contributes to a neuroinflammatory response causing increased sensitivity and additional pain.

Drs. Wilson and White and colleagues administered AMD3100, an orphan drug known to block the CXCR4 response, to rats. By halting the signaling process, the researchers interrupted the OIH response, Dr. White explained. "If this translates appropriately in people, this application would likely make morphine a safer, more effective drug for chronic pain control."

The research was funded by the National Institute on Drug Abuse.

Co-authors are Richard J. Miller, Ph.D., and Hosung Jung, Ph.D., both molecular pharmacologist at Northwestern University.

Mary L. Hardin | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>