Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A parasite’s exit strategy: Researchers discover protein necessary for spread of common infection

27.01.2009
Study could lead to development of new drugs, vaccine

University of Michigan researchers have discovered that a common parasite infecting one in five Americans needs an escape hatch to go on a destructive mission that can damage the brain, eyes and other organs.

The protozoan parasite called Toxoplasma gondii infects up to 23 percent of Americans. In some areas of the world, up to 95 percent of the population serves as host to this parasite, which causes toxoplasmosis, a serious infection that can lead to birth defects, eye disease and life-threatening encephalitis.

In the study published in the current issue of Science, UM researchers report the protein called TgPLP1 is responsible for helping the parasite spread infection. This research breakthrough may one day aid in developing drugs or vaccines to treat or prevent toxoplasmosis or related diseases, including malaria.

“For some time we've been interested in how this parasite successfully enters cells,” says Vern B. Carruthers, Ph.D., the study’s senior author and associate professor in the Department of Microbiology and Immunology at the U-M Medical School.

“A couple of years ago, we identified several new proteins secreted by the parasite. Among these was TgPLP1, which captured our interest because it is related to proteins of our own immune system responsible for warding off infection and cancer," Carruthers says.

After the initial period of infection, which may cause mild flu-like symptoms, Toxoplasma gondii goes on to lie dormant in a person's brain and central nervous system. But if a person's immune system becomes compromised, such as from human immunodeficiency virus (HIV) infection or organ transplant surgery, the Toxoplasma infection can be reactivated.

In an immunocompromised person, Toxoplasma gondii amplifies the infection by invading a cell and undergoing several rounds of replication within that cell. "Then it has to escape from the cell in order to find and infect additional cells," Carruthers explains.

TgPLP1 is a type of protein responsible for forming pores, or small openings, in the cell membrane to allow the parasite to escape and cause disease more rapidly throughout the host.

Research details

Carruthers' research team pinpointed how TgPLP1 works by generating and observing a cultured parasite that does not have the TgPLP1 protein. While observing the movements of the mutant parasite with video microscopy, the team noticed that, compared to the normal parasite, the parasite without TgPLP1 struggled to get out of the host cells and remained trapped within the cell membrane.

The research team offers several theories as to how the protein enhances the parasite's ability to cause disease.

“We think that this protein helps the parasite escape by weakening the membranes that encase the parasite during replication,” says Bjorn F.C. Kafsack, Ph.D., a research fellow in U-M’s Department of Microbiology and Immunology and the study’s first author. “It’s also possible that TgPLP1 works by allowing other proteins to break out ahead of the parasite. These other proteins could digest components of the host cell that serve as barriers to the parasite getting out of the host cell.”

Even when infected host cells were treated with a drug that would normally trigger the parasite to leave, TgPLP1-deficient parasites had difficulty or failed to exit from the host cell.

For the next stage of the research, the team injected mice with the TgPLP1-deficient parasites. "The mutant parasites grow quite quickly when we culture them in the lab but when we infect mice with them, they're severely weakened," a fact that came as a surprise, Kafsack says.

Significantly more TgPLP1-deficient parasites were needed to cause disease in the mice, compared to the normal parasites, researchers found.

“It implies that the ability of the parasite to quickly escape from its old host cell is a critical step during infection of animals,” Kafsack says.

Implications

Now that researchers know the purpose and importance of this protein for the disease, they may find ways of interfering with its functions, such as finding a selective treatment that disables the parasite protein and therefore slows or stops Toxoplasma gondii's spread.

Using the gene-deleted mutants developed in this research against Toxoplasma gondii, scientists may eventually be able to develop a vaccine against this common infection, Carruthers says.

"Because the gene deletion mutants are so weakened, they could be used as a vaccine strain to initiate an immune response that may be protective, but without persisting or causing disease as the normal parasites would," Carruthers says.

This research may also offer insights into how the parasite that causes malaria, which kills more than 1 million people each year, might spread and cause infection.

"Because the malaria parasite has proteins similar to the one in the study, it may also use a pore-forming protein to escape from infected red blood cells," Carruthers says. Better understanding these mechanisms may someday help researchers develop new strategies for controlling the spread of the disease.

Funding for the research came from the National Institutes of Health and the American Heart Association.

Citation: Science, Vol. 323, No. 5913, pp. 530-533.

Written by Kim Roth

Shantell M. Kirkendoll | University of Michigan
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>