Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A parasite’s exit strategy: Researchers discover protein necessary for spread of common infection

27.01.2009
Study could lead to development of new drugs, vaccine

University of Michigan researchers have discovered that a common parasite infecting one in five Americans needs an escape hatch to go on a destructive mission that can damage the brain, eyes and other organs.

The protozoan parasite called Toxoplasma gondii infects up to 23 percent of Americans. In some areas of the world, up to 95 percent of the population serves as host to this parasite, which causes toxoplasmosis, a serious infection that can lead to birth defects, eye disease and life-threatening encephalitis.

In the study published in the current issue of Science, UM researchers report the protein called TgPLP1 is responsible for helping the parasite spread infection. This research breakthrough may one day aid in developing drugs or vaccines to treat or prevent toxoplasmosis or related diseases, including malaria.

“For some time we've been interested in how this parasite successfully enters cells,” says Vern B. Carruthers, Ph.D., the study’s senior author and associate professor in the Department of Microbiology and Immunology at the U-M Medical School.

“A couple of years ago, we identified several new proteins secreted by the parasite. Among these was TgPLP1, which captured our interest because it is related to proteins of our own immune system responsible for warding off infection and cancer," Carruthers says.

After the initial period of infection, which may cause mild flu-like symptoms, Toxoplasma gondii goes on to lie dormant in a person's brain and central nervous system. But if a person's immune system becomes compromised, such as from human immunodeficiency virus (HIV) infection or organ transplant surgery, the Toxoplasma infection can be reactivated.

In an immunocompromised person, Toxoplasma gondii amplifies the infection by invading a cell and undergoing several rounds of replication within that cell. "Then it has to escape from the cell in order to find and infect additional cells," Carruthers explains.

TgPLP1 is a type of protein responsible for forming pores, or small openings, in the cell membrane to allow the parasite to escape and cause disease more rapidly throughout the host.

Research details

Carruthers' research team pinpointed how TgPLP1 works by generating and observing a cultured parasite that does not have the TgPLP1 protein. While observing the movements of the mutant parasite with video microscopy, the team noticed that, compared to the normal parasite, the parasite without TgPLP1 struggled to get out of the host cells and remained trapped within the cell membrane.

The research team offers several theories as to how the protein enhances the parasite's ability to cause disease.

“We think that this protein helps the parasite escape by weakening the membranes that encase the parasite during replication,” says Bjorn F.C. Kafsack, Ph.D., a research fellow in U-M’s Department of Microbiology and Immunology and the study’s first author. “It’s also possible that TgPLP1 works by allowing other proteins to break out ahead of the parasite. These other proteins could digest components of the host cell that serve as barriers to the parasite getting out of the host cell.”

Even when infected host cells were treated with a drug that would normally trigger the parasite to leave, TgPLP1-deficient parasites had difficulty or failed to exit from the host cell.

For the next stage of the research, the team injected mice with the TgPLP1-deficient parasites. "The mutant parasites grow quite quickly when we culture them in the lab but when we infect mice with them, they're severely weakened," a fact that came as a surprise, Kafsack says.

Significantly more TgPLP1-deficient parasites were needed to cause disease in the mice, compared to the normal parasites, researchers found.

“It implies that the ability of the parasite to quickly escape from its old host cell is a critical step during infection of animals,” Kafsack says.

Implications

Now that researchers know the purpose and importance of this protein for the disease, they may find ways of interfering with its functions, such as finding a selective treatment that disables the parasite protein and therefore slows or stops Toxoplasma gondii's spread.

Using the gene-deleted mutants developed in this research against Toxoplasma gondii, scientists may eventually be able to develop a vaccine against this common infection, Carruthers says.

"Because the gene deletion mutants are so weakened, they could be used as a vaccine strain to initiate an immune response that may be protective, but without persisting or causing disease as the normal parasites would," Carruthers says.

This research may also offer insights into how the parasite that causes malaria, which kills more than 1 million people each year, might spread and cause infection.

"Because the malaria parasite has proteins similar to the one in the study, it may also use a pore-forming protein to escape from infected red blood cells," Carruthers says. Better understanding these mechanisms may someday help researchers develop new strategies for controlling the spread of the disease.

Funding for the research came from the National Institutes of Health and the American Heart Association.

Citation: Science, Vol. 323, No. 5913, pp. 530-533.

Written by Kim Roth

Shantell M. Kirkendoll | University of Michigan
Further information:
http://www.umich.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>