Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A pan-European study: signs of motor disorders can appear years before disease manifestation

22.05.2013
It is known that signs of neurological disorders such as Alzheimer’s and Huntington’s disease can appear years before the disease becomes manifest; these signs take the form of subtle changes in the brain and behavior of individuals affected.

For the first time, an international group of researchers led by the German Center for Neurodegenerative Diseases (DZNE) and the Bonn University Hospital has proven the existence of such signatures for motor disorders belonging to the group of “spinocerebellar ataxias”. The scientists report these findings in the current online edition of “The Lancet Neurology”.

This pan-European study could open up new possibilities of early diagnosis and smooth the way for treatments which tackle diseases before the patient’s nervous system is irreparably damaged.

“Spinocerebellar ataxias” comprise a group of genetic diseases of the cerebellum and other parts of the brain. Persons affected only have limited control of their muscles. They also suffer from balance disorders and impaired speech. The symptoms originate from mutations in the patient’s genetic make-up. These cause nerve cells to become damaged and to die off. Such genetic defects are comparatively rare: it is estimated that about 3,000 people in Germany are affected.

It is known that there are various subtypes of these neurodegenerative diseases. The age at which the symptoms manifest consequently fluctuates between about 30 and 50. “Our aim was to find out whether specific signs can be recognized before a disease becomes obvious,” says project leader Prof. Thomas Klockgether, Director for Clinical Research at the DZNE and Director of the Clinic for Neurology at Bonn University Hospital.

Pan-European cooperation

The study, which involved 14 research centers in all, focused on the four most common forms of spinocerebellar ataxia. These account for more than half of all cases. More than 250 siblings and children of patients throughout Europe declared their willingness to participate in appropriate tests. These individuals had no obvious symptoms of ataxia. However, about half of them had inherited the genetic defects which invariably cause the disease to manifest in the long term.

With the aid of a mathematical model that considered the genetic mutations and their effects, the scientists were able to estimate the time remaining until the disease could be expected to manifest. In the test group, this “time to onset” varied from 2 to 24 years. These and all other test results remained anonymous: the data was not known to the test subjects, neither could the researchers assign it to specific participants. The same applied to individuals whose DNA turned out to be inconspicuous. “People in families with cases of ataxia usually have not taken a genetic test and they don’t want to know any results. This kind of information has to be treated very carefully for ethical reasons,” emphasizes Klockgether.

Extensive tests

The study participants made themselves available for various examinations including standardized tests of muscular coordination. These included measuring the time needed by the subjects to walk a specific distance. Another series of experiments involved inserting small pins into the holes of a board and taking them back out as quickly as possible. Yet another test measured how often the participants could repeat a certain sequence of syllables in ten seconds. “The tests were designed in such a way that they would provide significant information but still be easy to perform,” says Klockgether. “Tests like these can be performed anywhere without need for special technology.”

Technically complex methods were also used: all study participants were tested for the genetic defects relevant to ataxia. At some of the research centers involved in the study, it was also possible to examine the subjects with the aid of magnetic resonance imaging (MRI). This enabled researchers to measure the total brain volume as well as the dimensions of individual parts of the brain in about a third of the subjects.

Notable findings

In two of the four types of ataxia investigated, the scientists found signs of impending disease. “We found a loss in brain volume, particularly shrinkage in the area of the cerebellum and brain stem. These subjects also had subtle difficulties with coordination,” Klockgether summarizes the results. “This means that manifestations of this kind can be measured years before the disease is likely to become obvious.”

The findings for the other two types of ataxia were less conclusive. “I assume that there are indications also for these types of the disease. However, this subgroup of participants was relatively small. It is therefore difficult to make statistically reliable statements about these subjects,” says the Bonn-based researcher.

In his view, the study results testify to the modern-day view of neurodegenerative processes: “Neurodegeneration doesn’t begin when the symptoms surface. Rather, it is a stealthy disease which starts developing years or even decades beforehand.”

Klockgether believes that this gradual development offers certain opportunities: “If we intervened in this process by appropriate treatments and at a sufficiently early stage, it might be possible to slow down or even stop the disease process.”

More investigations planned

The current results will be the basis for long-term investigations. A new series of tests with the same group of individuals has already started; further tests are scheduled every two years. The scientists intend to monitor the study participants for as long as possible.

Original publication
“Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data“, Heike Jacobi, Kathrin Reetz et al, The Lancet Neurology, online publication on May 22, 2013. doi:10.1016/S1474-4422(13)70104-2

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association of German Research Centres with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. Its partners in Bonn are the caesar research center, the University of Bonn and the Bonn University Hospital. Website: http://www.dzne.de/en

Contact

Prof. Dr. Thomas Klockgether
Director for Clinical Research, DZNE, Bonn
Director of the Clinic for Neurology, Bonn University Hospital
Tel.: +49 228 287-14431
E-mail: thomas.klockgether@dzne.de
Dr. Marcus Neitzert
Press and Public Relations
DZNE, Bonn
Tel.: + 49 228 43302-271
E-mail: marcus.neitzert@dzne.de
Johannes Seiler
Press and Public Relations
University of Bonn
Tel.: + 49 228 73-4728
E-mail: j.seiler@uni-bonn.de

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de
http://www.dzne.de/en

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>