Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Mother’s Salt Intake Could be Key to Prenatal Kidney Development

07.07.2011
A new animal study finds that too much or too little salt has an impact, and could lead to a lifetime of high blood pressure

A new animal study from Europe has drawn an association between pregnant mothers’ sodium intake and their newborn’s kidney development. Among the most significant aspects of the study’s findings is that either too much or too little salt during pregnancy had an adverse effect on the prenatal development of the offspring’s kidneys. The consequence of such disruption can lead to high blood pressure in later years.

These are the conclusions reached in the study, “Both High and Low Maternal Salt Intake in Pregnancy Alters Kidney Development in the Offspring,” conducted by Nadezda Koleganova, Grzegorz Piecha, Annett Müller, Monika Weckbach, Peter Schirmacher, and Marie-Luise Gross-Weissmann, Eberhard Ritz and Luis Eduardo Becker, all with the University of Heidelberg in Heidelberg, DE; and Jens Randel Nyengaard of the University of Aarhus, Aarhus, DK. Their study is published in the online edition of the American Journal of Physiology--Renal Physiology.

Background
This research builds upon past studies that recognize that excessive salt intake causes secretion of endogenous cardiotonic steroids such as marinobufagenin (MBG). For the pregnant female, this can be harmful since high concentrations of MBG are correlated to low birth-weight and higher blood pressure in the offspring.

Previous research has also linked high blood pressure with a low nephron number, critical because the nephron is the basic structural and functional unit of the kidney. The nephron eliminates wastes from the body, regulates blood volume and blood pressure, controls levels of electrolytes and metabolites, and regulates blood pH. Its functions are vital to life and are regulated by the endocrine system.

Methodology
Sprague-Dawley rats were fed low, intermediate or high sodium diets during pregnancy and lactation. The litters were standardized to identical size at birth with 1:1 male to female ratio. The offspring were separated from their mothers at four weeks of age and subsequently received the intermediate sodium diet. The animals had free access to water and food and their body weight, food and water consumption were monitored weekly.

The kidney structure was assessed at postnatal weeks 1 and 12, and the expression of proteins known to be involved in kidney development were examined at birth and 1 week of age. Blood pressure was measured by telemetry in male offspring between the ages of two and nine months.

Results
The researchers found that the number of glomeruli (the main structural unit of the kidney) during weeks 1-12 were significantly lower, and the measured blood pressure for males after the fifth month was higher in offspring of mothers on high- or low- compared with intermediate-sodium diet. High salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both GDNF and its inhibitor, sprouty-1 in the offspring’s kidney. The expression of FGF-10, a genetic signal responsible for kidney development, was lower in offspring of mothers on low-sodium diet and the expression of Pax-2 and FGF-2, tissue-specific genes that determine cell lineages, tissue patterning, and cellular proliferation was lower in offspring of mothers on high-sodium diet.
Importance of the Findings
Taken together the above findings indicate that both too low and too high maternal salt intakes retard development of new glomeruli, resulting in a nephron deficit. If the findings in the animals in this study can be extrapolated to humans, both too low and too high salt intake during pregnancy would be a risk factor for hypertension and renal damage in the offspring.

In women, each mother-to-be has specific health issues and conditions that require guidance from a health provider. This study sheds light on the issue of salt intake during pregnancy and draws attention to the possible consequences of consuming too much or too little salt during pregnancy and the impact it may have on the kidney development of an offspring.

NOTE TO EDITORS: The abstract and study are available online. To request an interview with a member of the research team, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick on Twitter, or 301.634.7209.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS; www.the-APS.org/press) has been an integral part of the discovery process since it was established in 1887. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>