Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can a Mother's Voice Spur Recovery From a Coma?

11.05.2010
Study tests if familiar voices can heal traumatic brain injuries

Karen Schroeder's voice, recorded on a CD, reminded her son, Ryan, of his 4-H project when he was 10 and decided to raise pigs. "You bid on three beautiful squealing black and white piglets at the auction," she said softly. "We took them home in the trunk of our Lincoln Town Car, because we didn't have a truck."

Recordings from Ryan's mother, father or sister were played through headphones for him four times a day. They were part of a new clinical trial investigating whether repeated stimulation with familiar voices can help repair a coma victim's injured brain networks and spur his recovery.

In January 2009, Ryan, a 21-year-old college student from Huntley, Ill., was in a coma after he had been flung from his snowmobile into a tree during an ice storm. He had a traumatic brain injury; the fibers of his brain had been twisted and stretched from the impact.

He regained consciousness after nearly one month in the trial and has made steady progress during the past year. Researchers, however, won't know for certain if the therapy helped his recovery until the study is over.

The trial is being led by Theresa Pape, a research assistant professor of physical medicine and rehabilitation at Northwestern University Feinberg School of Medicine and a research health scientist at Hines VA Hospital. Funded by the U.S. Department of Veteran Affairs, the research may be useful to young people like Ryan as well as soldiers injured in combat, who have a high rate of traumatic brain injuries from roadside bombs.

"Traumatic brain injury is a huge issue in our society," Pape said. "Every 21 seconds, we have a new head injury and about one-third of those will be severe."

The most common cause of severe head injury in the civilian population is motor vehicle accidents, and the highest-risk group is 16-to-24-year-old males. In the military, the risk of traumatic brain injury is three times that of civilians, even in peacetime. While the actual number is not known, an estimated 8,470 soldiers were diagnosed with traumatic brain injury from January 2003 through September 2008. (Pape thinks that number is low, because many troops have not been evaluated for mild traumatic brain injury.)

Pape hopes the study will provide an answer to the question that families are desperate to know when a loved one is in a coma: ‘Can he hear me?' She is especially eager to know if these family voices can facilitate repair of the brain to improve the subject's ability to function and process and understand information.

Pape's hypothesis is that repeated exposure to familiar voices could help repair the brain's neural networks, some of which become sheared in traumatic brain injury. In a previous small pilot study, Pape observed that subjects in a vegetative state responded more to the voices of people who are familiar to them compared with non-familiar voices.

When those subjects heard voices of their family members, an MRI scan showed that parts of their brain were activated, appearing as bright yellow and red blobs of light scattered in an unorganized pattern. With unfamiliar voices, there was little activation.

"The question became are the familiar voices therapeutic in some way?" Pape asked. "Will they spur an improvement in behavior?"

Her background as a speech pathologist inspired the research. "I was weaned on language processing, how the brain responds to different linguistic stimuli as well as familiar or non-familiar voices, different sounds," Pape said. "This is a very speech pathology-based study."

When a subject is enrolled in the trial, Pape does a baseline functional MRI scan of his brain, examining the reaction to familiar versus unfamiliar voices. In a healthy person, she would expect to see a family member's voice activate the temporal lobe, the site of memory, and the frontal lobe, the part of the brain that pays attention when your name is called aloud. She doesn't see that in her subjects with new severe traumatic brain injury.

"As they recover, we want to see if these areas become activated in the way we'd expect in a healthy person," Pape said.

Pape also tracks the state of their axons, the thick white fibers that comprise the brain's networks and allow different parts of the brain to communicate with each other. In a traumatic brain injury, the axons can become ripped and twisted like interstate highways in a Hollywood disaster movie.

"In a healthy brain, the networks function in a very organized manner, from front to back, for example," Pape said. "The injured brain has a disorganized direction we don't understand. The axons are sheared, torqued and twisted. We're trying to figure out how and if they work after a severe brain injury. Maybe they zigzag or connect with an unexpected neuron."

For the trial, subjects are divided into three groups: high dose, who hear 10 minutes of stories daily four times a day for six weeks; low dose, who hear five minutes of stories and 35 minutes of silence four times a day; and the "sham" group who wear the head phones but don't hear any stories. After six weeks, Pape measures how the subject's behavioral condition compares to changes she sees in the brain on new MRI images.

The trial is double blinded, meaning Pape will not know whether subjects were in the high, low or sham dose group until the study, which will enroll about 45 subjects, is completed in 2011. The earlier description of Karen Schroeder's voice being played for Ryan occurred after the initial double-blinded part of the study. After this part, all subjects receive the high dose of stories for six weeks to make sure that if there is a benefit, everyone has the same advantage.

Pape's imaging data of a subject's brain before and after the voice treatment will reveal if networks are better connected as a result of the therapy, and if that is linked to improvement in the subject's functioning.

When Schroeder enrolled her son in the trial in late February 2009, about a month after his accident, he could not follow commands or make purposeful movements. His eyes were open, but he did not seem to be aware of his environment. At the time, a doctor had told Schroeder to make arrangements to place her son in a nursing home.

But after three weeks in the trial, Schroeder began to notice changes in her son. First, she said, Ryan began to notice the lights outside the window of his room in the Northwestern University Clinical Research Unit on the 10th floor of Northwestern Memorial Hospital, the location where he received the voice therapy.

"I could tell he was starting to come around," Schroeder said. "Before, he would lay in the bed and a herd of cattle could walk through and he would not be aware that they were there. Now, little by little he would start to respond.

Then, he began to slowly follow a command to push a ball out of his hand. A little more than a year later, Ryan now texts his friends, brushes his teeth and walks with a walker or a four-prong cane. He is practicing walking without a device. While he struggles with poor balance, he recently started eye therapy, which may or may not help his balance. A palate lift several months ago greatly improved his speech, according to Schroeder. Ryan continues with physical, occupational and speech therapies at the Rehabilitation Institute of Chicago in Wheeling.

"Given the extent of his injuries, Ryan has recovered well," Pape said. "But I can't draw any conclusions yet. We have to wait until we have all the study data."

In the meantime, Ryan helps at his family's asphalt paving business where he enters data into the computer. He doesn't remember his accident or hearing the tapes of his family. "He continues to make progress. It is truly a remarkable recovery," said Karen Schroeder. "The good Lord keeps throwing us ropes. We got involved in this by the grace of God."

Marla Paul is the health sciences editor. Contact her at marla-paul@northwestern.edu

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: Coma MRI MRI scan Voice brain injury traumatic brain injury

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>