# Forum for Science, Industry and Business

Search our Site:

## A mathematical model for moving bottlenecks in road traffic

20.01.2011
Serious traffic gridlocks, like the jam on Beijing’s national expressway a few months ago which brought vehicles to a halt for days, are a real-world issue needing attention. Unfortunately, such standstills are not uncommon in Beijing, or in other cities around the world.

Such incidents motivate the analysis of traffic to minimize similar events and provide insight into road design and construction, such as where to install traffic lights and toll booths, how many lanes to build, and where to construct an overpass or a tunnel. The goals of these analyses are to relieve congestion in high traffic areas, reduce the risk of accidents, and manage safety and security of motorists.

Not surprisingly, vehicular traffic flow has been tackled by mathematicians, engineers and physicists alike. Mathematical approaches to study traffic are usually based on the speed, density and flow of vehicles on a given roadway. In a paper published this month in the SIAM Journal on Mathematical Analysis, authors Corrado Lattanzio, Amelio Maurizi and Benedetto Piccoli propose a mathematical model of vehicular traffic based on the study of a moving bottleneck caused by a slow-moving vehicle within the flow of cars. The effect of moving bottlenecks on flow of traffic is an important factor in evaluating travel times and traveling paths for commuters.

Many different mathematical models have been proposed to study traffic, including models that use second-order equations for mass and momentum, multipopulation models that factor in the varying characteristics of different kinds of vehicles, and dynamic models that consider traffic flows.

Most of the models so far proposed, however, solve the problem of a single vehicle independently of the entire traffic flow, and so are not completely coupled. An example is a PDE-ODE model that used a partial differential equation to model the flow of traffic while using an ordinary differential equation to determine the position of a single vehicle. Since both could be solved independently, the system did not take into account the influence of the single car on the entire traffic flow.

The paper by Lattanzio et al provides a fully coupled, multi-scale model in which the microscopic position of a single car is taken together with the macroscopic car density on the road. In this micro-macro model, the dynamics of a moving bottleneck caused by a slow-moving vehicle on a street are used to study the effects of disruptions on the flow of traffic. Mathematically, the problem is solved using the fractional step method. In successive time steps, a PDE is first solved for the density of traffic and then the ODE is solved for the position of the slow-moving vehicle.

By solving the bottleneck problem in a coupled fashion, better transportation designs can be made in anticipation of such inevitable traffic congestion.

Source:

Moving Bottlenecks in Car Traffic Flow: A PDE-ODE Coupled Model

Corrado Lattanzio, Amelio Maurizi, and Benedetto Piccoli

SIAM Journal on Mathematical Analysis, 43 (2011), pp 50-67

Pub date: January 4, 2011

Further information:
http://www.siam.org

### More articles from Studies and Analyses:

Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

### Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

### Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

### Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

### Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige