Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Majority Prefers Letting Computers Decide


When individuals engage in risky business transactions with each other, they may end up being disappointed.

This is why they'd rather leave the decision on how to divvy up jointly-owned monies to a computer than to their business partner.

Prof. Dr. Bernd Weber from the Center for Economics and Neuroscience at the University of Bonn.

(c) Photo: Uni Bonn

This subconscious strategy seems to help them avoid the negative emotions associated with any breaches of trust. This is the result of a study by scientists from the University of Bonn and US peers. They are presenting their findings in the scientific journal "Proceedings of the Royal Society B."

Trust is an essential basis for business relationships. However, this basis can be shaken if one business partner exhibits dishonest behavior. "Everyone knows that trust can be shattered in risky businesses," explained Prof. Dr. Bernd Weber from the Center for Economics and Neuroscience (CENs) at the University of Bonn. "As a result, people are not all that eager to put their trust in others." Scientists call this attitude "betrayal aversion" – people try to avoid being disappointed by potential breaches of trust. 

In a current study, Prof. Weber and his US colleagues, Prof. Dr. Jason A. Aimone from Baylor University and Prof. Dr. Daniel Houser from George Mason University examined in experiments the effects betrayal aversion has on simple financial decisions. A total of 30 subjects played a computer game at George Mason University in Arlington, VA (USA) that promised real monies to the winners.

At the Life & Brain Zentrum of the University of Bonn, the same number of subjects then made their decisions based on the results of the earlier experiment. And while the Bonn subjects were responding to their gaming partners' decisions made earlier in Arlington, their brain activity was measured by means of MRI scans.

Sharing fairly or making a profit at the other person's expense? 

In this experiment, the test subjects in Bonn were able to select whether they and their US partners would get one euro each only, or whether they wanted to have a higher amount – i.e., 6 euros – divided up. However, the latter variant came with a risk. So, for example, the other player might get as much as 5.60 euros while the Bonn player would be left with only 40 Cents.

The actual dividing of the amount, which came in a second step, could be left either to one's partner or to the computer. However, the computer gave out exactly the same decisions as the real test subjects. "So, from the point of view of winnings, there was no difference whether the other player or the machine divided the amount," explained Prof. Weber. "And the subjects had explicitly been told so from the very start." 

Even though the winnings were exactly the same in the end, more subjects put their trust into the computer. When the money was divided by the computer, 63 percent of subjects trusted the process and only 37 percent preferred taking just the one euro. But if the arrangement was that the human partners would make the decision, only 49 percent of test subjects trusted them – 51 percent would rather take the more secure, small amount.

"These results show that more subjects prefer to leave risky decisions in which they may be betrayed to an impersonal device, thus avoiding the negative feeling that comes from having wrongly trusted a human," said Prof. Weber, adding that obviously a breach of trust committed by an impersonal computer was less emotionally stressful than if had been a private business partner. 

The brain's frontal insula was especially active

The University of Bonn's subjects also showed interesting brain activities as measured in MRI scans. In the process of making financial decisions, the frontal insula was especially active when it was another player who made the decision on how to divide the amount. "This area of the brain is always involved when negative emotions such as pain, disappointment or fear are activated," explained Prof. Weber. He added that the fact that the frontal insula was activated is a clear indication that negative emotions played an important role in these situations. 

Financial decisions are very complex. "This is a very contrary phenomenon. Many studies show that the anonymity of business partners on the Internet results in a loss of trust," said Prof. Weber. "But our results indicate that this anonymity can also help avoid negative feelings." He added that these decision processes in financial transactions would yet have to be studied in more detail. 

Publication: Neural Signatures of Betrayal Aversion: An fMRI Study of Trust, Proceedings of the Royal Society B, DOI: 10.1098/rspb.2013.2127


Prof. Dr. Bernd Weber
Center for Economics and Neuroscience
and Life & Brain Zentrum
at the University of Bonn
Ph. +49 228/6885262


Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Brain Decide Economics MRI Neuroscience decisions emotions scans subjects

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>