Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Majority Prefers Letting Computers Decide

19.03.2014

When individuals engage in risky business transactions with each other, they may end up being disappointed.

This is why they'd rather leave the decision on how to divvy up jointly-owned monies to a computer than to their business partner.


Prof. Dr. Bernd Weber from the Center for Economics and Neuroscience at the University of Bonn.

(c) Photo: Uni Bonn

This subconscious strategy seems to help them avoid the negative emotions associated with any breaches of trust. This is the result of a study by scientists from the University of Bonn and US peers. They are presenting their findings in the scientific journal "Proceedings of the Royal Society B."

Trust is an essential basis for business relationships. However, this basis can be shaken if one business partner exhibits dishonest behavior. "Everyone knows that trust can be shattered in risky businesses," explained Prof. Dr. Bernd Weber from the Center for Economics and Neuroscience (CENs) at the University of Bonn. "As a result, people are not all that eager to put their trust in others." Scientists call this attitude "betrayal aversion" – people try to avoid being disappointed by potential breaches of trust. 

In a current study, Prof. Weber and his US colleagues, Prof. Dr. Jason A. Aimone from Baylor University and Prof. Dr. Daniel Houser from George Mason University examined in experiments the effects betrayal aversion has on simple financial decisions. A total of 30 subjects played a computer game at George Mason University in Arlington, VA (USA) that promised real monies to the winners.

At the Life & Brain Zentrum of the University of Bonn, the same number of subjects then made their decisions based on the results of the earlier experiment. And while the Bonn subjects were responding to their gaming partners' decisions made earlier in Arlington, their brain activity was measured by means of MRI scans.

Sharing fairly or making a profit at the other person's expense? 

In this experiment, the test subjects in Bonn were able to select whether they and their US partners would get one euro each only, or whether they wanted to have a higher amount – i.e., 6 euros – divided up. However, the latter variant came with a risk. So, for example, the other player might get as much as 5.60 euros while the Bonn player would be left with only 40 Cents.

The actual dividing of the amount, which came in a second step, could be left either to one's partner or to the computer. However, the computer gave out exactly the same decisions as the real test subjects. "So, from the point of view of winnings, there was no difference whether the other player or the machine divided the amount," explained Prof. Weber. "And the subjects had explicitly been told so from the very start." 

Even though the winnings were exactly the same in the end, more subjects put their trust into the computer. When the money was divided by the computer, 63 percent of subjects trusted the process and only 37 percent preferred taking just the one euro. But if the arrangement was that the human partners would make the decision, only 49 percent of test subjects trusted them – 51 percent would rather take the more secure, small amount.

"These results show that more subjects prefer to leave risky decisions in which they may be betrayed to an impersonal device, thus avoiding the negative feeling that comes from having wrongly trusted a human," said Prof. Weber, adding that obviously a breach of trust committed by an impersonal computer was less emotionally stressful than if had been a private business partner. 

The brain's frontal insula was especially active

The University of Bonn's subjects also showed interesting brain activities as measured in MRI scans. In the process of making financial decisions, the frontal insula was especially active when it was another player who made the decision on how to divide the amount. "This area of the brain is always involved when negative emotions such as pain, disappointment or fear are activated," explained Prof. Weber. He added that the fact that the frontal insula was activated is a clear indication that negative emotions played an important role in these situations. 

Financial decisions are very complex. "This is a very contrary phenomenon. Many studies show that the anonymity of business partners on the Internet results in a loss of trust," said Prof. Weber. "But our results indicate that this anonymity can also help avoid negative feelings." He added that these decision processes in financial transactions would yet have to be studied in more detail. 

Publication: Neural Signatures of Betrayal Aversion: An fMRI Study of Trust, Proceedings of the Royal Society B, DOI: 10.1098/rspb.2013.2127

Contact:

Prof. Dr. Bernd Weber
Center for Economics and Neuroscience
and Life & Brain Zentrum
at the University of Bonn
Ph. +49 228/6885262

Email: bernd.weber@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: Brain Decide Economics MRI Neuroscience decisions emotions scans subjects

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

Consensus in the Fight Against Colorectal Cancer

31.05.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>