Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Majority Prefers Letting Computers Decide

19.03.2014

When individuals engage in risky business transactions with each other, they may end up being disappointed.

This is why they'd rather leave the decision on how to divvy up jointly-owned monies to a computer than to their business partner.


Prof. Dr. Bernd Weber from the Center for Economics and Neuroscience at the University of Bonn.

(c) Photo: Uni Bonn

This subconscious strategy seems to help them avoid the negative emotions associated with any breaches of trust. This is the result of a study by scientists from the University of Bonn and US peers. They are presenting their findings in the scientific journal "Proceedings of the Royal Society B."

Trust is an essential basis for business relationships. However, this basis can be shaken if one business partner exhibits dishonest behavior. "Everyone knows that trust can be shattered in risky businesses," explained Prof. Dr. Bernd Weber from the Center for Economics and Neuroscience (CENs) at the University of Bonn. "As a result, people are not all that eager to put their trust in others." Scientists call this attitude "betrayal aversion" – people try to avoid being disappointed by potential breaches of trust. 

In a current study, Prof. Weber and his US colleagues, Prof. Dr. Jason A. Aimone from Baylor University and Prof. Dr. Daniel Houser from George Mason University examined in experiments the effects betrayal aversion has on simple financial decisions. A total of 30 subjects played a computer game at George Mason University in Arlington, VA (USA) that promised real monies to the winners.

At the Life & Brain Zentrum of the University of Bonn, the same number of subjects then made their decisions based on the results of the earlier experiment. And while the Bonn subjects were responding to their gaming partners' decisions made earlier in Arlington, their brain activity was measured by means of MRI scans.

Sharing fairly or making a profit at the other person's expense? 

In this experiment, the test subjects in Bonn were able to select whether they and their US partners would get one euro each only, or whether they wanted to have a higher amount – i.e., 6 euros – divided up. However, the latter variant came with a risk. So, for example, the other player might get as much as 5.60 euros while the Bonn player would be left with only 40 Cents.

The actual dividing of the amount, which came in a second step, could be left either to one's partner or to the computer. However, the computer gave out exactly the same decisions as the real test subjects. "So, from the point of view of winnings, there was no difference whether the other player or the machine divided the amount," explained Prof. Weber. "And the subjects had explicitly been told so from the very start." 

Even though the winnings were exactly the same in the end, more subjects put their trust into the computer. When the money was divided by the computer, 63 percent of subjects trusted the process and only 37 percent preferred taking just the one euro. But if the arrangement was that the human partners would make the decision, only 49 percent of test subjects trusted them – 51 percent would rather take the more secure, small amount.

"These results show that more subjects prefer to leave risky decisions in which they may be betrayed to an impersonal device, thus avoiding the negative feeling that comes from having wrongly trusted a human," said Prof. Weber, adding that obviously a breach of trust committed by an impersonal computer was less emotionally stressful than if had been a private business partner. 

The brain's frontal insula was especially active

The University of Bonn's subjects also showed interesting brain activities as measured in MRI scans. In the process of making financial decisions, the frontal insula was especially active when it was another player who made the decision on how to divide the amount. "This area of the brain is always involved when negative emotions such as pain, disappointment or fear are activated," explained Prof. Weber. He added that the fact that the frontal insula was activated is a clear indication that negative emotions played an important role in these situations. 

Financial decisions are very complex. "This is a very contrary phenomenon. Many studies show that the anonymity of business partners on the Internet results in a loss of trust," said Prof. Weber. "But our results indicate that this anonymity can also help avoid negative feelings." He added that these decision processes in financial transactions would yet have to be studied in more detail. 

Publication: Neural Signatures of Betrayal Aversion: An fMRI Study of Trust, Proceedings of the Royal Society B, DOI: 10.1098/rspb.2013.2127

Contact:

Prof. Dr. Bernd Weber
Center for Economics and Neuroscience
and Life & Brain Zentrum
at the University of Bonn
Ph. +49 228/6885262

Email: bernd.weber@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: Brain Decide Economics MRI Neuroscience decisions emotions scans subjects

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>