Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lower limit for future climate emissions

24.02.2016

A new study finds that the world can emit even less greenhouse gases than previously estimated in order to limit climate change to less than 2°C.

In a comprehensive new study published in the journal Nature Climate Change, researchers propose a limit to future greenhouse gas emissions—or carbon budget—of 590-1240 billion tons of carbon dioxide from 2015 onwards, as the most appropriate estimate for keeping warming to below 2°C, a temperature target which aims to avoid the most dangerous impacts of climate change.

The study finds that the available budget is on the low end of the spectrum compared to previous estimates—which ranged from 590 to 2390 billion tons of carbon dioxide for the same time period—lending further urgency to the need to address climate change.

“In order to have a reasonable chance of keeping global warming below 2°C, we can only emit a certain amount of carbon dioxide, ever. That’s our carbon budget,” says IIASA researcher Joeri Rogelj, who led the study. “This has been known for about a decade and the physics behind this concept are well-understood, but many different factors can lead to carbon budgets that are either slightly smaller or slightly larger. We wanted to understand these differences, and provide clarity on the issue for policymakers and the public.”

“This study shows that in some cases we have been overestimating the available budget by 50 to more than 200%. At the high end, this is a difference of more than 1000 billion tons of carbon dioxide,” says Rogelj.

Estimates for a carbon budget consistent with the 2°C target have varied widely. The new study provides a comprehensive analysis of these differences. The researchers identified that the variation in carbon budgets stemmed from differences in scenarios and methods, and the inclusion of other human activities that can affect the climate, for example the release of other greenhouse gases like methane. Previous research suggested that the varying contribution of other human activities would be the main reason for carbon budget variations, but surprisingly, the study now finds that methodological differences contribute at least as much.

The proposed budget accounts for warming of all human activities and greenhouse gases and is based on detailed scenarios that simulate low-carbon futures.

Rogelj says, “We now better understand the carbon budget for keeping global warming below 2 degrees. This carbon budget is very important to know because it defines how much carbon dioxide we are allowed to release into the atmosphere, ever. We have figured out that this budget is at the low end of what studies indicated before, and if we don’t start reducing our emissions immediately, we will blow it in a few decades.”

Reference
Rogelj J, Schaeffer M, Friedlingstein P, Gillett NP, van Vuuren D, Riahi K, Allen M, Knutti R, (2016). Differences between carbon budget estimates unraveled. Nature Climate Change March 2016. doi:10.1038/NCLIMATE2868

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft
Further information:
http://www.iiasa.ac.at

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>