Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lack of order

16.08.2010
A comparative study of two closely related organic insulators highlights the unusual properties of quantum spin liquids

A growing body of experimental evidence is lending support to the theory that an exotic state of matter called a quantum spin liquid actually exists. In a quantum spin liquid, the way electrons spin on their axes lacks any sense of organization throughout the material—even at temperatures approaching absolute zero, where order tends to reign supreme. However, definitive proof has proved elusive, particularly in two-dimensional systems.

Signatures of a quantum spin liquid have now been observed in an organic insulator by Reizo Kato at the RIKEN Advanced Science Institute, Wako, working in collaboration with researchers from Kyoto University and the Japan Science and Technology Agency1.

In a quantum spin liquid, the magnetic arrangement of the material is incompatible with the underlying crystal geometry, thus preventing the spin from showing any order (Fig. 1). “This leads to liquid-like properties among the spins, even at absolute zero temperature,” explains Kato. In contrast, molecules in ice arrange into a crystalline lattice—a pattern maintained throughout the material.

The team compared two closely related organic insulators EtMe3Sb[Pd(dmit)2]2 (abbreviated as dmit-131) and Et2Me2Sb[Pd(dmit)2]2 (abbreviated as dmit-221). Scientists previously proposed that dmit-131 may show quantum-spin-liquid state properties. Indeed, using nuclear magnetic resonance measurements, scientists have never identified any long-range magnetic order at temperatures as low as 19 millikelvin. The reason for this remains unclear. The crystal structure of dmit-221 is very similar; however, it exhibits a charge-ordered state. Kato and colleagues therefore thought that a comparison between the two should reveal any properties particular to quantum spin liquids.

The researchers measured the thermal conductivity at temperatures between 10 and 0.1 Kelvin, since one of the most important experimental parameters is the thermal conductivity divided by the temperature. In dmit-221, this parameter approaches zero as the temperature gets closer to absolute zero. “This is typical behavior of insulators where lattice vibrations carry thermal energy,” says Kato. In dmit-331, however, they extrapolated the parameter to be nonzero at 0 Kelvin. “This is more akin to metallic behavior where free electrons carry the thermal energy.” This indicates the presence of so-called ‘gapless excitations’, meaning that there is no energy gap between the ground state and excited states. However, there is also some evidence for spin-gap-like excitations.

These results indicate that this system is a quantum spin liquid with a dual nature. “The next step is to address the fundamental question of whether a quantum spin liquid undergoes instabilities other than classical ordering,” Kato notes.

The corresponding author for this highlight is based at the Condensed Molecular Materials Laboratory, RIKEN Advanced Science Institute

Journal information

1. 1.Yamashita, M., Nakata, N., Senshu, Y., Nagata, M., Yamamoto, H.M., Kato, R., Shibauchi, T. & Matsuda, Y. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science 328, 1246–1248 (2010). article

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6365
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>