Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A lack of order

16.08.2010
A comparative study of two closely related organic insulators highlights the unusual properties of quantum spin liquids

A growing body of experimental evidence is lending support to the theory that an exotic state of matter called a quantum spin liquid actually exists. In a quantum spin liquid, the way electrons spin on their axes lacks any sense of organization throughout the material—even at temperatures approaching absolute zero, where order tends to reign supreme. However, definitive proof has proved elusive, particularly in two-dimensional systems.

Signatures of a quantum spin liquid have now been observed in an organic insulator by Reizo Kato at the RIKEN Advanced Science Institute, Wako, working in collaboration with researchers from Kyoto University and the Japan Science and Technology Agency1.

In a quantum spin liquid, the magnetic arrangement of the material is incompatible with the underlying crystal geometry, thus preventing the spin from showing any order (Fig. 1). “This leads to liquid-like properties among the spins, even at absolute zero temperature,” explains Kato. In contrast, molecules in ice arrange into a crystalline lattice—a pattern maintained throughout the material.

The team compared two closely related organic insulators EtMe3Sb[Pd(dmit)2]2 (abbreviated as dmit-131) and Et2Me2Sb[Pd(dmit)2]2 (abbreviated as dmit-221). Scientists previously proposed that dmit-131 may show quantum-spin-liquid state properties. Indeed, using nuclear magnetic resonance measurements, scientists have never identified any long-range magnetic order at temperatures as low as 19 millikelvin. The reason for this remains unclear. The crystal structure of dmit-221 is very similar; however, it exhibits a charge-ordered state. Kato and colleagues therefore thought that a comparison between the two should reveal any properties particular to quantum spin liquids.

The researchers measured the thermal conductivity at temperatures between 10 and 0.1 Kelvin, since one of the most important experimental parameters is the thermal conductivity divided by the temperature. In dmit-221, this parameter approaches zero as the temperature gets closer to absolute zero. “This is typical behavior of insulators where lattice vibrations carry thermal energy,” says Kato. In dmit-331, however, they extrapolated the parameter to be nonzero at 0 Kelvin. “This is more akin to metallic behavior where free electrons carry the thermal energy.” This indicates the presence of so-called ‘gapless excitations’, meaning that there is no energy gap between the ground state and excited states. However, there is also some evidence for spin-gap-like excitations.

These results indicate that this system is a quantum spin liquid with a dual nature. “The next step is to address the fundamental question of whether a quantum spin liquid undergoes instabilities other than classical ordering,” Kato notes.

The corresponding author for this highlight is based at the Condensed Molecular Materials Laboratory, RIKEN Advanced Science Institute

Journal information

1. 1.Yamashita, M., Nakata, N., Senshu, Y., Nagata, M., Yamamoto, H.M., Kato, R., Shibauchi, T. & Matsuda, Y. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science 328, 1246–1248 (2010). article

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6365
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>