Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a jump to the left

16.12.2009
Study on memory for dance moves discovers substantial cross-cultural diversity in human cognition

Despite the fact that physical space follows similar laws everywhere across the globe, cultures vary as to how space is encoded in their language.

Some, for example, do not use egocentric terms such as 'left, right, front, back' to talk about spatial relations, instead using allocentric notions like 'north, south, east, west' at all times for all scales: "The spoon is north of the bowl" or "There is an snake by your Northern leg". Whether not only spatial language but also spatial cognition varies across cultures remains a contested question.

In a new study, which will be published in next week's issue of Current Biology, Daniel Haun and Christian Rapold present a comparative analysis of how children from different cultures articulate spatial relations in different ways: Germans, whose language preferentially codes space in "right, left, front, back" terms, and the Akhoe Hai||om, a semi-nomadic hunter-gatherer group from Northern Namibia, whose language preferentially codes space in "North, South, East, West" terms.

How can we know the dancer from the dance?

Researchers from the same group had previously shown that cultures differ in the way they represent the locations of objects in space. However, knowing where our own hands and feet are has a strongly "egocentric" organization in the brain in various cultures. Therefore, you might expect all people to remember body movements in essentially the same manner. The new study shows that this expectation needs to be adjusted.

In the present study, the researchers asked children to learn a short dance, during which they move their clasped hands from one side of their body to the other in a right-left-right-right (RLRR) sequence. Then, the participants were rotated 180 degrees around their own axis, and asked to 'dance again'. Afterwards, they danced again in their original orientation. If participants coded the RLRR dance in egocentric coordinates they should produce a RLRR sequence after both Rotations 1 and 2. Alternatively, if participants coded a RLRR dance in allocentric coordinates they should produce a LRLL sequence after Rotation 1 and a RLRR sequence after Rotation 2. While almost all German children produced body-centred responses, the vast majority of Akhoe Hai||om children memorize movements of their limbs in relation to an external reference system anchored in their environment. Paraphrasing, their arms don't move right, but west.

"The human mind varies more across cultures than we generally assume," said Daniel Haun, member of the Max Planck Research Group for Comparative Cognitive Anthropology. "Even everyday tasks that we would never think of doing any other way, like remembering body movements, are done differently in other places. This is the kind of fact that should make us stop and reconsider how little we know about the diversity of human cognition. The Akhoe Hai||om community is an exemplar of indigenous cultures around the world with drastically different concepts of their surroundings, which are the key to understand the plasticity of the human mind. However, these astonishing cultures are constantly vanishing and therefore the documentation of this kind of human variability is a highly urgent task".

In future research the Max Planck research Group for Comparative Cognitive Anthropology aims to document the extent of cross-cultural variability in different domains of human cognition and determine the underlying uniquely human set of psychological mechanisms, which allow and stabilize the astounding cross-cultural cognitive variability across the human species.

Dr. Daniel Haun | EurekAlert!
Further information:
http://www.mpg.de

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>