Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a jump to the left

16.12.2009
Study on memory for dance moves discovers substantial cross-cultural diversity in human cognition

Despite the fact that physical space follows similar laws everywhere across the globe, cultures vary as to how space is encoded in their language.

Some, for example, do not use egocentric terms such as 'left, right, front, back' to talk about spatial relations, instead using allocentric notions like 'north, south, east, west' at all times for all scales: "The spoon is north of the bowl" or "There is an snake by your Northern leg". Whether not only spatial language but also spatial cognition varies across cultures remains a contested question.

In a new study, which will be published in next week's issue of Current Biology, Daniel Haun and Christian Rapold present a comparative analysis of how children from different cultures articulate spatial relations in different ways: Germans, whose language preferentially codes space in "right, left, front, back" terms, and the Akhoe Hai||om, a semi-nomadic hunter-gatherer group from Northern Namibia, whose language preferentially codes space in "North, South, East, West" terms.

How can we know the dancer from the dance?

Researchers from the same group had previously shown that cultures differ in the way they represent the locations of objects in space. However, knowing where our own hands and feet are has a strongly "egocentric" organization in the brain in various cultures. Therefore, you might expect all people to remember body movements in essentially the same manner. The new study shows that this expectation needs to be adjusted.

In the present study, the researchers asked children to learn a short dance, during which they move their clasped hands from one side of their body to the other in a right-left-right-right (RLRR) sequence. Then, the participants were rotated 180 degrees around their own axis, and asked to 'dance again'. Afterwards, they danced again in their original orientation. If participants coded the RLRR dance in egocentric coordinates they should produce a RLRR sequence after both Rotations 1 and 2. Alternatively, if participants coded a RLRR dance in allocentric coordinates they should produce a LRLL sequence after Rotation 1 and a RLRR sequence after Rotation 2. While almost all German children produced body-centred responses, the vast majority of Akhoe Hai||om children memorize movements of their limbs in relation to an external reference system anchored in their environment. Paraphrasing, their arms don't move right, but west.

"The human mind varies more across cultures than we generally assume," said Daniel Haun, member of the Max Planck Research Group for Comparative Cognitive Anthropology. "Even everyday tasks that we would never think of doing any other way, like remembering body movements, are done differently in other places. This is the kind of fact that should make us stop and reconsider how little we know about the diversity of human cognition. The Akhoe Hai||om community is an exemplar of indigenous cultures around the world with drastically different concepts of their surroundings, which are the key to understand the plasticity of the human mind. However, these astonishing cultures are constantly vanishing and therefore the documentation of this kind of human variability is a highly urgent task".

In future research the Max Planck research Group for Comparative Cognitive Anthropology aims to document the extent of cross-cultural variability in different domains of human cognition and determine the underlying uniquely human set of psychological mechanisms, which allow and stabilize the astounding cross-cultural cognitive variability across the human species.

Dr. Daniel Haun | EurekAlert!
Further information:
http://www.mpg.de

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>