Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A how-to guide to slashing California's greenhouse gas emissions by 2050

25.11.2011
Berkeley Lab scientists help analyze the technological steps needed to create a low-carbon future for the Golden State

What will a day in the life of a Californian be like in 40 years? If the state cuts its greenhouse gas emissions 80 percent below 1990 levels by 2050 — a target mandated by a state executive order — a person could wake up in a net-zero energy home, commute to work in a battery-powered car, work in an office with smart windows and solar panels, then return home and plug in her car to a carbon-free grid.

Such is a future envisaged in a study published Nov. 24 by the journal Science that analyzes the infrastructure and technology changes needed to reach California's aggressive emissions reduction goal. The study was conducted by scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the San Francisco-based energy consulting firm Energy and Environmental Economics (E3).

The researchers describe a not-so distant time in which lights, appliances, and other devices are pushed to unprecedented levels of energy efficiency. Electricity is generated without emitting carbon dioxide into the atmosphere. And most importantly — even after these measures are implemented — cars, heating systems, and most other equipment that now run on oil and natural gas will instead be powered by electricity.

The scientists say that all of this will be technologically feasible by 2050 if today's pace of technology innovation continues.

"This study is meant to guide decisions about how to invest in our future. Assuming plausible technological advances, we find that it's possible for California to achieve deep greenhouse gas reductions by 2050," says Margaret Torn, the corresponding author of the paper and a staff scientist in Berkeley Lab's Earth Sciences Division. Jim Williams, chief scientist at E3 and professor at the Monterey Institute of International Studies, is the lead author of the paper.

"To reach this goal, energy efficiency comes first, followed by decarbonization of electricity generation, followed by the electrification of transportation and other sectors," says Williams.

The scientists developed this prescription using a model of California's greenhouse gas emissions from 2010 to 2050 that takes into account the state's changing population, economy, and physical infrastructure. The model includes six energy demand sectors (residential, commercial, industrial, agriculture, transportation, and petroleum industry) and two supply sectors (fuel and electricity).

They explored the best ways to reach California's goal of reducing greenhouse gas emissions in 2050 by 80 percent below 1990 levels. This target is consistent with the Intergovernmental Panel on Climate Change's Fourth Assessment Report, which outlines the global emissions required to stabilize atmospheric concentrations at 450 parts per million. In California, this means a sharp reduction in CO2 emissions per year from 427 million metric tons in 1990 to 85 million metric tons in 2050.

The scientists started with this 85 million metric ton target and worked backwards to determine the changes needed to get there. They arrived at four mitigation scenarios, all of which rely on three major energy system transformations. Among the findings:

Energy Efficiency Comes First

Energy efficiency has been the low-hanging fruit for decades when it comes to reducing energy demand, and will likely remain so. The scientists found that energy efficiency improvements will net 28 percent of the emissions reductions required to meet California's goal. The catch, however, is that energy efficiency will have to improve by at least 1.3 percent per year over the next 40 years. This is less than the level California achieved during its 2000-2001 electricity crisis, but it has never been sustained for decades.

The scientists found that the largest share of greenhouse gas reductions from energy efficiency comes from the building sector via improvements in building shell, HVAC systems, lighting, and appliances.

Next, Decarbonize Electricity Generation

Another 27 percent reduction in emissions comes from switching to electricity generation technologies that don't pour carbon dioxide into the atmosphere. Renewable energy, nuclear power, and fossil fuel-powered generation coupled with carbon capture and storage technology each has the potential to be the chief electricity resource in California. But they all must overcome technical limitations, and they're all currently more expensive than conventional power generation.

Because it's unclear which technology or technologies will win out in the long run, the scientists developed three separate scenarios that emphasize how each can reach the target, plus a fourth scenario that includes a blend of all three.

In addition, they determined that Californians can't rely on renewable energy alone. At most, they found that 74 percent of the state's electricity could be supplied by sources such as wind and solar. The scientists also stressed that a renewable energy-intensive grid will require breakthroughs in energy storage and ways to enable smart charging of vehicles, among other technologies.

They also found that 15 percent of the required emissions reductions could come from measures to reduce non-energy related CO2 and other greenhouse gas emissions, such as from landfill and agricultural activities. And 14 percent could come from various unrelated technologies and practices such as smart planning of urban areas, biofuels for the trucking and airline industry, and rooftop solar photovoltaics.

And Finally, Goodbye Gas, Hello Electrons

Even after these emission reduction measures are employed, the scientists still came up short in ensuring California meets its emissions reduction goal by 2050. So they turned to cars, space and water heaters, and industrial processes that consume fuel and natural gas. They determined that most of these technologies had to be electrified, with electricity constituting 55 percent of end-use energy in 2050, compared to 15 percent today. Overall, this nets a 16-percent reduction in greenhouse gas emissions, the final push needed to achieve an 80-percent reduction below 1990 levels.

The largest share of greenhouse gas reductions from electrification came from transportation. In the study, 70 percent of vehicle miles traveled — including almost all light-duty vehicle miles — are powered by electricity in 2050.

"The task is daunting, but not impossible. California has the right emissions trajectory with Assembly Bill 32," says Williams, referring to California's 2006 emissions legislation. "And it isn't a matter of technology alone. R&D, investment, infrastructure planning, incentives for businesses, even behavior changes, all have to work in tandem. This requires policy, and society needs to be behind it."

Margaret Torn's contribution to the study was supported by DOE's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at http://science.energy.gov/

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Additional information:

The study, "The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity," is published Nov. 24 by Science in its online website Science Express.

Dan Krotz | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>