Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A global model for the origin of species independent of geographical isolation

21.07.2009
A modern approach to the formation of diverse species is developed without boundaries and ecosystem niches

The tremendous diversity of life continues to puzzle scientists, long after the 200 years since Charles Darwin's birth. However, in recent years, consistent patterns of biodiversity have been identified over space, time organism type and geographical region.

Two views of the process of "speciation" -- the evolutionary process by which new biological species arise -- dominates evolutionary theory. The first requires a physical barrier such as a glacier, mountain or body of water to separate organisms enabling groups to diverge until they become separate species. In the second, an environment favors specific characteristics within a species, which encourages divergence as members fill different roles in an ecosystem.

In a new study, "Global patterns of speciation and diversity," just published in Nature, Les Kaufman, Boston University professor of biology and associate director of the BU Marine Program along with a team of researchers from The New England Complex Systems Institute, have collaborated and found a way to settle the debate which deals with the origin of species independent of geographic isolation.

They demonstrated, using a computer model, how diverse species can arise from the arrangement of organisms across an area, without any influence from geographical barriers or even natural selection. Over generations, the genetic distance between organisms in different regions increases, the study noted. Organisms spontaneously form groups that can no longer mate resulting in a patchwork of species across the area. Thus the number of species increases rapidly until it reaches a relatively steady state.

"Our biodiversity results provide additional evidence that species diversity arises without specific physical barriers," the study states.

The computer simulations, the authors, note showed the distribution of species formed patterns similar to those that have occurred with real organisms all around the world.

"The model we put forward in the paper lays the groundwork for more powerful tests of the role played by natural and sexual selection, as well as habitat complexity in shaping the patterns of biological diversity that we see around us today," said Kaufman. Our insights can be applied to the immense challenge that we now face -- not only to prevent the extinction of a large chunk of life, but also to prevent ourselves from quenching the very forces that fuel the continuous creation of new life forms on earth."

This study is also the fourth in a series from The New England Complex Systems Institute on the role of complexity in species coexistence and evolutionary diversification.

"One can think about the creation of species on the genetic level in the same way we think about the appearance of many patterns, including traffic jams," said Yaneer Bar-Yam, president of The New England Complex Systems Institute and a senior author of the study. "While the spatial environment may vary, specific physical barriers aren't necessary. Just as traffic jams can form from the flow of traffic itself without an accident, the formation of many species can occur as generations evolve across the organisms' spatial habitat."

In addition to Kaufman and Bar-Yam, the other collaborators and authors of the study are Marcus deAguiar and M. Baranger, both from New England Complex Systems Institute and E.M. Baptestini, of Universidade Estadual de Campinas in Sao Paulo, Brazil.

Support for the research program came from the Marine Management Area Science Program of Conservational International and the Gordon and Betty Moore Foundation.

Ronald Rosenberg | EurekAlert!
Further information:
http://www.bu.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>