Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better genetic test for autism

15.03.2010
In largest study to date, chromosomal microarray analysis picks up more abnormalities than current tests

A large study from Children's Hospital Boston and the Boston-based Autism Consortium finds that a genetic test that samples the entire genome, known as chromosomal microarray analysis, has about three times the detection rate for genetic changes related to autism spectrum disorders (ASDs) than standard tests. Publishing in the April issue of Pediatrics (and online March 15), the authors urge that CMA become part of the first-line genetic work-up for ASDs.

Expectant parents who have family members with ASDs, as well as families who already have an affected child, often request genetic testing. However, there is still only limited knowledge about actual causative genes. The currently recommended tests (karyotyping to look for chromosomal abnormalities and testing for Fragile X, the single largest known genetic cause of ASDs) often come up negative. Chromosomal microarray analysis (CMA) is a genome-wide assay that examines the chromosomes for tiny, sub-microscopic deletions or duplications of DNA sequences, known as copy-number variants.

CMA offers about 100-fold greater resolution than standard karyotyping. However, since it is new, it is often considered a second-tier test. Depending on where a person lives, or what insurance they have, CMA may not be covered by health insurance. "Based on our findings, CMA should be considered as part of the initial clinical diagnostic evaluation of patients with ASDs," says Bai-Lin Wu, PhD, Director of Children's DNA Diagnostic Lab in the Department of Laboratory Medicine, which has offered CMA to families since 2006.

The research team, led by co-senior authors Wu (heading the Children's team), and David Miller, MD, PhD, of Children's Division of Genetics and Department of Laboratory Medicine (heading the Autism Consortium team), assessed the diagnostic value of CMA in the largest cohort to date -- 933 patients with a clinical diagnosis of ASD (by DSM-IV-TR criteria) who received clinical genetic testing in 2006, 2007 and 2008.

Half were Children's patients who had their samples submitted to the hospital's DNA Diagnostic Laboratory, and the others were recruited through the Autism Consortium, a research and clinical collaboration of five Boston-area medical centers. Nearly half of the patients were diagnosed with autistic disorder, nearly half with PDD-NOS (pervasive developmental disorder – not otherwise specified) and about 3 percent with Asperger disorder. Ages ranged from 13 months to 22 years.

Testing included the two currently used tests (G-banded karyotype and fragile X), as well as CMA. When the researchers compared the tests' diagnostic yield, they found:

Karyotyping yielded abnormal results in 2.23 percent of patients
Fragile X testing was abnormal in 0.46 percent
CMA results were judged to be abnormal in 7.3 percent of patients when the entire length of the chromosomes (the whole genome) was sampled.

Extrapolating from these results, the researchers estimate that without CMA, genetic diagnosis will be missed in at least 5 percent of ASD cases. CMA performed best in certain subgroups, such as girls with autistic disorder, and past studies indicate that it also has a higher yield in patients with intellectual disability (who constituted only 12 percent of this sample).

"CMA clearly detects more abnormalities than other genetic tests that have been the standard of care for many years," says Miller. "We're hoping this evidence will convince insurance companies to cover this testing universally."

In all, roughly 15 percent of people with autism have a known genetic cause. Establishing a clear genetic diagnosis helps families obtain early intervention and services for autism, and helps parents predict the possibility of having another child with autism.

In addition, by pinpointing bits of chromosomes that are deleted or duplicated, CMA can help researchers zero in on specific causative genes within that stretch of DNA. They can also begin to classify patients according to the type of deletion or duplication they have, and try to find specific treatment approaches for each sub-type of autism.

"Just in the last two years, a number of studies have revealed the clinical importance of ever smaller chromosome deletions and duplications found with advanced microarray technology," says Wu. "These new, highly-efficient tests can help in the evaluation or confirmation of autism spectrum disorders and other developmental disorders, leading to early diagnosis and intervention and a significantly improved developmental outcome."

Two known chromosome locations – on chromosome 16 (16p11.2) and chromosome 15 (15q13.2q13.3) accounted for 17 percent of abnormal CMA findings. Both chromosome abnormalities were initially linked with ASDs by Children's Hospital Boston and collaborators in The New England Journal of Medicine and the Journal of Medical Genetics, respectively, in 2008. Children's now offers specific tests targeting both of these "hot spots."

However, the researchers note that most copy-number changes were unique or identified in only a small number of patients, so their implications need further study. Many of them are presumed to be related to ASDs because they involve important genes, cover a large region of the chromosome, or because the child is the first person in that family to have the change.

"Some deletions and duplications are rare and specific to one individual or one family," says Miller. "Learning about them is going to be an evolving process. There won't be one single test that finds all genetic changes related to autism, until we completely understand the entire genome."

The paper's co-first authors were Autism Consortium members Yiping Shen, PhD, of Children's Department of Laboratory Medicine and the Center for Human Genetic Research at Massachusetts General Hospital, and Kira Dies, ScM, LGC, of the Family Research Network of the Autism Consortium and Children's Multi-Disciplinary Tuberous Sclerosis Program. A number of specialists from Children's Departments of Neurology, Developmental Medicine and Clinical Genetics and physicians from other medical centers in greater Boston were also authors on the study. The research was supported by the Nancy Lurie Marks Family Foundation, the Simons Foundation, Autism Speaks and the National Institutes of Health.

Families interested in scheduling an appointment at Children's may call the Developmental Medicine Center (617-355-7025) or the Department of Neurology (617-355-2711).

Citation: Shen Y; et al. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics 2010 Apr; 125(4):e1-e17. (Published online March 15)

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.

Keri Stedman | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>