Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A family history of alcoholism may make adolescent brains respond differently

17.01.2012
  • Adolescents with a family history of alcoholism (FHP) are at risk for developing alcohol use disorders.
  • A new study has compared the brain activity of FHP youth to peers with no family history of alcoholism.
  • Two areas of the brain – the prefrontal cortex and cerebellum – responded differently during risky decision-making in high-risk youth compared to their lower-risk peers.

Researchers know that adolescents with a family history of alcoholism (FHP) are at risk for developing alcohol use disorders. Some studies have shown that, compared to their peers, FHP adolescents have deficits in behavioral inhibition.

A study of the neural substrates of risk-taking in both FHP adolescents and their peers with a negative family history of alcoholism (FHN) has shown that FHP youth demonstrated atypical brain activity while completing the same task as the FHN youth.

Results will be published in the April 2012 issue of Alcoholism: Clinical & Experimental Research and are currently available at Early View.

"We know that a familial history of alcoholism is a significant risk factor for future alcohol abuse," said Bonnie J. Nagel, assistant professor of psychiatry and behavioral neuroscience at Oregon Health & Science University as well as corresponding author for the study. "We were interested in determining whether adolescents at heightened risk for alcohol use made more risky decisions during a laboratory task compared to their lower-risk peers. Additionally, we wanted to examine whether differences in brain responses when making risky decisions were present in these two groups. We wanted to investigate pre-morbid neural risk factors during decision making in FHP youth, as opposed to differences in brain response due to heavy alcohol use itself."

"This is the first study to examine the neural substrates of risk-taking in FHP adolescents who are substance naïve," added Megan Herting, a PhD candidate in behavioral neuroscience at Oregon Health & Science University. "A previous study looked at young adults who were drinkers, therefore, it is hard to say if the differences found were purely a pre-existing neural risk factor for alcohol use. Alcohol use may also differentially impact the brains of those with and without a family history of alcoholism. Thus, the current study is a very novel and important piece of work showing that the brain is doing something different during risky decision making in substance-naïve FHP adolescents."

Study authors recruited 31 youth – 18 FHP (12 males, 6 females) and 13 FHN (8 males, 5 females) – between 13 and 15 years of age from the local community. All of the youth had little to no alcohol involvement prior to their participation in the study. Functional magnetic resonance imaging (fMRI) was used to examine brain responses of the youth during a Wheel of Fortune (WOF) decision-making task, which presented risky versus safe probabilities of winning different amounts of money.

"While our study found that FHP adolescents did not perform significantly differently on the WOF task compared to the FHN adolescents," said Nagel, "we found two areas of the brain that responded differently. These areas were in the prefrontal cortex and cerebellum, both of which are important for higher-order day-to-day functioning, such as decision-making. In these brain regions, FHP adolescents showed weaker brain responses during risky decision-making compared to their FHN peers. We believe that weaker activation of these brain areas, known to be important for optimal decision-making, may confer vulnerability towards risky decisions with regards to future alcohol use in adolescents already at risk for alcoholism."

Herting noted that higher-order or executive functioning is also important for things like attention, working memory, and inhibition. "Therefore, differences in brain activity may impact the ability of FHP individuals to make good decisions in many contexts, and in particular may facilitate poor decision-making in regards to alcohol use," she said. "Taken together with other studies on FHP youth, these results suggest that atypical brain structure and function exist prior to any substance use, and may contribute to an increased vulnerability for alcoholism in these individuals."

Both Nagel and Herting believe these findings can help to develop better prevention programs based on familial risk factors. "These findings may suggest a neurobiological marker that helps to explain how family history of alcoholism confers risk," said Nagel. "Furthermore, our research may aid clinicians who work with high-risk youth to develop effective prevention strategies for these adolescents to promote healthy decision-making."

However, they both added, having a familial history of alcoholism is just one of many different factors involved in future alcohol abuse. "While having a family history of alcoholism may put one at greater risk for alcohol abuse, personality and behavioral risk factors are also important to consider," said Nagel. "The combination of genetic and environmental factors is very different for everyone, so some individuals may be at higher risk than others, and certainly there are genetic and environmental factors that can also protect against alcohol abuse. Future research will need to determine the relative influence of these traits on alcohol abuse risk to be able to design specific prevention strategies for different high-risk populations."

Alcoholism: Clinical & Experimental Research (ACER) is the official journal of the Research Society on Alcoholism and the International Society for Biomedical Research on Alcoholism. The first co-author of the ACER paper, "Risky Decision-Making: An fMRI Study of Youth at High Risk for Alcoholism," was Anita Cservenka in the Department of Behavioral Neuroscience at Oregon Health & Science University. The study was funded by the National Institute on Alcohol Abuse and Alcoholism, the Portland Alcohol Research Center, and the National Institute of Neurological Disorders and Stroke. This release is supported by the Addiction Technology Transfer Center Network at http://www.ATTCnetwork.org.

Bonnie J. Nagel | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>