Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Decade of Hi-Payoff, Hi-Throughput Combinatorial Research

25.05.2009
In its first decade of work, a research effort at the National Institute of Standards and Technology (NIST) to develop novel and improved “combinatorial” techniques for polymer research—an effort that became the NIST Combinatorial Methods Center (NCMC)—realized economic benefits of at least $8.55 for every dollar invested by NIST and its industry partners, according to a new economic analysis.

The new study,* conducted for NIST by RTI International, estimates that from inception (1998) through 2007, the investment in the NCMC has yielded a social rate of return of about 161 percent (also known as the “internal rate of return” in corporate finance; a minimum acceptable IRR for a government research project is about 50 percent). RTI’s evaluation also found that the NCMC accelerated industry’s adoption of combinatorial methods by an average of 2.3 years.

RTI surveyed and interviewed polymer scientists at NCMC member institutions, as well as from the much larger body of research universities and chemical companies who benefited from the center’s research and outreach. The study found that the NCMC has had a significant impact on the development and use of combinatorial research methods for polymers and other organic materials, both in the development of novel techniques and data and the diffusion of research results to the larger polymers research community.

Started as a NIST pilot project in 1998 and formally established in 2002, the NCMC was conceived as a community effort—supported by NIST and industry membership fees—to develop methods for discovering and optimizing complex materials such as multicomponent polymer coatings and films, adhesives, personal care products and structural plastics. Indeed, the RTI report lauded the novel “open source” consortium model that NIST developed for the center as a main reason for its success and impact. The program has since branched out into nanostructured materials, organic electronics, and biomaterials.

The big idea behind combinatorial and high-throughput research is to replace traditional, piecemeal approaches to testing new compounds with methods that can synthesize and test large numbers of possible combinations simultaneously and systematically. NIST in particular pioneered the idea of “continuous gradient libraries,” polymer test specimens whose properties change gradually and regularly from one side to the other so that the behavior of a huge number of possible mixtures can be evaluated at the same time. (For example, see http://www.nist.gov/public_affairs/techbeat/tb2006_0608.htm#designer “Designer Gradients Speed Surface Science Experiments,” NIST Tech Beat, June 8, 2006, and http://www.nist.gov/public_affairs/techbeat/tb2007_0510.htm#wet “Wetter Report: New Approach to Testing Surface Adhesion,” NIST Tech Beat, May 10, 2007.)

The NCMC has contributed advances in three major platform infratechnologies for creating combinatorial “libraries” for materials research—gradient thin films, and discrete libraries created by robotic dispensing systems and microfluidics systems—as well as several new high-throughput measurement methods and information technologies to manage the vast amount of data produced by combinatorial analysis. The center's research program is matched with an outreach effort to disseminate research results through open workshops and training programs.

The RTI report, Retrospective Economic Impact Assessment of the NIST Combinatorial Methods Center, is available online at www.nist.gov/director/prog-ofc/report09-1.pdf. The Web home page of the NIST Combinatorial Methods Center is at http://polymers.nist.gov/combi/index.html.

* A.C. O’Connor, H.J. Walls, D.W. Wood and A.N. Link. Retrospective Economic Impact Assessment of the NIST Combinatorial Methods Center. Planning Report 09-1 prepared by RTI International, Research Triangle Park, N. C. for the National Institute of Standards and Technology, April 2009.

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>