Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Decade of Hi-Payoff, Hi-Throughput Combinatorial Research

25.05.2009
In its first decade of work, a research effort at the National Institute of Standards and Technology (NIST) to develop novel and improved “combinatorial” techniques for polymer research—an effort that became the NIST Combinatorial Methods Center (NCMC)—realized economic benefits of at least $8.55 for every dollar invested by NIST and its industry partners, according to a new economic analysis.

The new study,* conducted for NIST by RTI International, estimates that from inception (1998) through 2007, the investment in the NCMC has yielded a social rate of return of about 161 percent (also known as the “internal rate of return” in corporate finance; a minimum acceptable IRR for a government research project is about 50 percent). RTI’s evaluation also found that the NCMC accelerated industry’s adoption of combinatorial methods by an average of 2.3 years.

RTI surveyed and interviewed polymer scientists at NCMC member institutions, as well as from the much larger body of research universities and chemical companies who benefited from the center’s research and outreach. The study found that the NCMC has had a significant impact on the development and use of combinatorial research methods for polymers and other organic materials, both in the development of novel techniques and data and the diffusion of research results to the larger polymers research community.

Started as a NIST pilot project in 1998 and formally established in 2002, the NCMC was conceived as a community effort—supported by NIST and industry membership fees—to develop methods for discovering and optimizing complex materials such as multicomponent polymer coatings and films, adhesives, personal care products and structural plastics. Indeed, the RTI report lauded the novel “open source” consortium model that NIST developed for the center as a main reason for its success and impact. The program has since branched out into nanostructured materials, organic electronics, and biomaterials.

The big idea behind combinatorial and high-throughput research is to replace traditional, piecemeal approaches to testing new compounds with methods that can synthesize and test large numbers of possible combinations simultaneously and systematically. NIST in particular pioneered the idea of “continuous gradient libraries,” polymer test specimens whose properties change gradually and regularly from one side to the other so that the behavior of a huge number of possible mixtures can be evaluated at the same time. (For example, see http://www.nist.gov/public_affairs/techbeat/tb2006_0608.htm#designer “Designer Gradients Speed Surface Science Experiments,” NIST Tech Beat, June 8, 2006, and http://www.nist.gov/public_affairs/techbeat/tb2007_0510.htm#wet “Wetter Report: New Approach to Testing Surface Adhesion,” NIST Tech Beat, May 10, 2007.)

The NCMC has contributed advances in three major platform infratechnologies for creating combinatorial “libraries” for materials research—gradient thin films, and discrete libraries created by robotic dispensing systems and microfluidics systems—as well as several new high-throughput measurement methods and information technologies to manage the vast amount of data produced by combinatorial analysis. The center's research program is matched with an outreach effort to disseminate research results through open workshops and training programs.

The RTI report, Retrospective Economic Impact Assessment of the NIST Combinatorial Methods Center, is available online at www.nist.gov/director/prog-ofc/report09-1.pdf. The Web home page of the NIST Combinatorial Methods Center is at http://polymers.nist.gov/combi/index.html.

* A.C. O’Connor, H.J. Walls, D.W. Wood and A.N. Link. Retrospective Economic Impact Assessment of the NIST Combinatorial Methods Center. Planning Report 09-1 prepared by RTI International, Research Triangle Park, N. C. for the National Institute of Standards and Technology, April 2009.

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>