Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even Without a Concussion, Blows to Head May Affect Brain, Learning and Memory

12.12.2013
Study: Single Season of Hits Connected to Brain, Memory and Thinking Changes

New research suggests that even in the absence of a concussion, blows to the head during a single season of football or ice hockey may affect the brain’s white matter and cognition, or memory and thinking abilities.

The study is published in the December 11, 2013, online issue of Neurology®, the medical journal of the American Academy of Neurology. White matter is brain tissue that plays an important role in the speed of nerve signals.

“We found differences in the white matter of the brain in these college contact sport athletes compared to non-contact sport varsity athletes,” said study author Thomas W. McAllister, MD, of Indiana University School of Medicine in Indianapolis. “The degree of white matter change in the contact sport athletes was greater in those who performed more poorly than expected on tests of memory and learning, suggesting a possible link in some athletes between how hard/often they are hit, white matter changes, and cognition, or memory and thinking abilities.”

The work was completed while McAllister was with the Geisel School of Medicine at Dartmouth in Hanover, NH.

The study involved 80 concussion-free Division I NCAA Dartmouth College varsity football and ice hockey players who wore helmets that recorded the acceleration-time of the head following impact. They were compared to 79 non-contact sport athletes in activities such as track, crew and Nordic skiing. The players were assessed before and shortly after the season with brain scans and learning and memory tests.

The study found that a subgroup of both types of athletes performed worse than predicted on a test of verbal learning and memory at the end of the season. A total of 20 percent of the contact players and 11 percent of the non-contact athletes scored more than 1.5 standard deviations below the predicted score. McAllister said a decline this large would have been expected in less than seven percent of a normal population. This subgroup showed more change in the corpus callosum region of the brain than the athletes who scored as predicted on the test. The corpus callosum is a bundle of nerves that connects the right and left sides of the brain.

“This group of athletes with different susceptibility to repetitive head impacts raises the question of what underlying factors might account for the changes in learning and memory, and whether those affects are long-term or short-lived,” said McAllister.

The study was supported by the National Institutes of Health and the National Operating Committee on Standards for Athletic Equipment.

To learn more about concussion, please visit www.aan.com/concussion.

The American Academy of Neurology, an association of more than 26,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Alzheimer’s disease, stroke, migraine, multiple sclerosis, brain injury, Parkinson’s disease and epilepsy.

For more information about the American Academy of Neurology, visit http://www.aan.com

Rachel L. Seroka | American Academy of Neurology
Further information:
http://www.aan.com

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>