Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new Concept in Microscopy

12.10.2010
Self-reconstructing Laser Beams - published in “Nature Photonics”

It’s a familiar situation for all car drivers. In the autumn, when the roads are foggy, visibility drops below 50 metres. The light of the car’s headlights are scattered by the drops of fog, meaning we can’t see objects further away because the light can’t reach them.

This everyday example illustrates a key problem of light microscopy. When used in modern cell biology, the dense clusters of thousands of cells scatter the light so strongly that the cells located in the back of an object can hardly be seen. Although better known from science fiction, the concept of self-reconstructing laser beams offers a promising solution to the problem.

Together with his team of scientists, Dr. Alexander Rohrbach, Professor for Bio- and Nano-photonics at the University of Freiburg’s Department of Microsystems Engineering – IMTEK, is developing new, unconventional techniques in microscopy “whose physical concepts are at least as exciting as their technical realisation,” Rohrbach said. His doctoral student, Florian Fahrbach, whose research focuses on self-reconstructing laser beams, added, “We’ve been working on this for the last four years.

Without the support of the Freiburg Cluster of Excellence BIOSS – Centre for Biological Signalling Studies and Carl Zeiss MicroImaging GmbH, it would have been very difficult to realise the concept we’re now presenting!” Rohrbach is also pleased: “We managed to achieve a direct transfer from basic research to application in the form of a new microscope. That's definitely what most researchers want!”

In the forthcoming November issue of Nature Photonics the scientists describe their new light microscope, which relies on beams that reconstruct themselves in light-scattering media. The new method not only provides novel insights into the physics of complex light scattering, but it also enables, for example, to look about 50 percent deeper into human skin tissue than with conventional laser beams. The scientists have named their new invention MISERB (microscope with self-reconstructing beams).

The researchers from Freiburg were able to demonstrate in several experiments that specially formed laser beams are able to self-reconstruct even in the presence of various obstacles, for example a high number of light-scattering biological cells, which repeatedly destroy the laser beam’s profile. Self-reconstruction works because the scattered photons (light quanta) at the centre of the beam are constantly replaced by new photons from the side. What is so astounding is that the photons from the side all converge at the centre of the beam nearly in phase in order to build a new beam profile, undeterred by considerable lags from the scattering. The scientists therefore used a computer hologram (a device that changes the phase of light) to modify conventional laser beams into so-called Bessel beams whose phase profile has the shape of a cone. Although Bessel beams are known to be diffraction-free in free space, it has been completely unclear whether, and to what degree, they are able to regain their original beam shape also in inhomogeneous media, where light scattering is considerable.

Not only do the results of this study have the potential to generate more exciting physical experiments in the field of nonlinear optics, but the BIOSS Cluster of Excellence also has reason to hope that it will make new biological signal cascades deep inside living organisms more visible than ever before.

Melanie Hübner | alfa
Further information:
http://www.uni-freiburg.de

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>