Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breath of fresh air could improve drug toxicity screening

04.09.2009
Mass. General-developed strategy dramatically improves function of cultured liver cells

A team led by Massachusetts General Hospital (MGH) researchers has developed an innovative way to culture liver cells for drug toxicity screening. In a report to be published in Proceedings of the National Academy of Sciences that has been released online, the investigators describe how liver cells grown in a high-oxygen environment and in a culture medium free of animal-derived serum quickly begin to function as they do within the liver.

Better and faster ways to screen drugs for toxic side effects could significantly reduce the cost and expense of bringing new drugs to market, along with reducing unexpected adverse events that can occur when new agents move from the clinical trial stage into wider use, the authors note. Since the liver plays a key role in the metabolism and clearance of drugs, screening for liver toxicity is an essential step in assuring the safety of new agents. But studies in animals are not always successful in predicting toxic liver effects, and freshly cultured liver cells quickly lose their metabolic competence under standard culture methods.

"Finding a better way to culture liver cells has been a major stumbling block in the development of predictive drug-discovery tools," says Yaakov Nahmias, PhD, of the MGH Center for Engineering in Medicine (CEM), the paper's senior author. "We needed to develop an environment in which liver cells behave as they do in the body."

Earlier studies by the CEM team and others suggested that animal-derived serum, commonly used in cell cultures, may interfere with the metabolism of cultured liver cells. Since one of the key stresses involved in moving cells from an in vivo environment into culture is a tenfold drop in oxygen levels, the researchers theorized that a high-oxygen, serum-free culture environment might be the answer.

Their experiments first confirmed that serum interferes with the metabolism of cultured rat and human liver cells. They then found that liver cells grown with endothelial cells in a serum-free culture with 95 percent oxygen quickly resume normal metabolic activity, including gene expression and cell function. These cultured cells successfully predicted the clearance rates for both rapid- and slow-acting drugs and maintained a high level of metabolic activity for several weeks.

"This is a significant achievement," says Martin Yarmush, MD, PhD, director of the MGH Center for Engineering in Medicine and a co-author of the PNAS study. "Oxygen had been thought to affect cell survival but not gene expression or the function of cultured liver cells. This all changed when we started looking at new formations of culture media." Yarmush is the Helen Andrus Benedict Professor of Surgery at Harvard Medical School, where Nahmias is an instructor in Bioengineering.

The new culture system is being licensed to HìREL Corporation of Beverly Hills, Calif., a company developing human-relevant models of drug metabolism. Future work will explore extending these results to other cell systems and clinical applications, such as transplantation of liver cells.

Srivatsan Kidambi, PhD, of the MGH Center for Engineering Medicine (MGH-CEM) is the lead author of the PNAS paper. Additional co-authors are Rubin Yarmush, MGH-CEM; and Eric Novik, PhD, and Piyun Chao, PhD, HìREL Corporation. The study was partially supported by grants from the National Institutes of Health and Shriners Hospitals for Children.

Massachusetts General Hospital (www.massgeneral.org), established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of almost $550 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>