Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A brain region for resisting alcohol's allure

03.04.2014

University of Utah neuroscientists finds the lateral habenula controls sensitivity to the negative effects of drinking alcohol

As recovering spring breakers are regretting binge drinking escapades, it may be hard for them to appreciate that there is a positive side to the nausea, sleepiness, and stumbling.


University of Utah neuroscientists find a brain region called the lateral habenula is involved in resisting the temptation of alcohol.

Credit: Andrew Haack

University of Utah neuroscientists report that when a region of the brain called the lateral habenula is chronically inactivated in rats, they repeatedly drink to excess and are less able to learn from the experience. The study, published online in PLOS ONE on April 2, has implications for understanding behaviors that drive alcohol addiction.

While complex societal pressures contribute to alcoholism, physiological factors are also to blame. Alcohol is a drug of abuse, earning its status because it tickles the reward system in the brain, triggering the release of feel-good neurotransmitters. The dreaded outcomes of overindulging serve the beneficial purpose of countering the pull of temptation, but little is understood about how those mechanisms are controlled.

U of U professor of neurobiology and anatomy Sharif Taha, Ph.D. and colleagues, tipped the balance that reigns in addictive behaviors by inactivating in rats a brain region called the lateral habenula. When the rats were given intermittent access to a solution of 20% alcohol over several weeks, they escalated their alcohol drinking more rapidly, and drank more heavily than control rats.

"In people, escalation of intake is what eventually separates a social drinker from someone who becomes an alcoholic," said Taha. "These rats drink amounts that are quite substantial. Legally they would be drunk if they were driving,"

The lateral habenula is activated by bad experiences, suggesting that without this region the rats may drink more because they fail to learn from the negative outcomes of overindulging. The investigators tested the idea by giving the rats a desirable, sweet juice then injecting them with a dose of alcohol large enough to cause negative effects.

"It's the same kind of learning that mediates your response in food poisoning. You taste something and then you get sick, and then of course you avoid that food in future meals," explained Taha.

Yet rats with an inactivated lateral habenula sought out the juice more than control animals, even though it meant a repeat of the bad experience.

"The way I look at it is the rewarding effects of drinking alcohol compete with the aversive effects," explained Andrew Haack, who is co-first author on the study with Chandni Sheth, both neuroscience graduate students. "When you take the aversive effects away, which is what we did when we inactivated the lateral habenula, the rewarding effects gain more purchase, and so it drives up drinking behavior."

The group's findings may help explain results from previous clinical investigations demonstrating that men who were less sensitive to the negative effects of alcohol drank more heavily, and were more likely to become problem drinkers later in life.

The researches think the lateral habenula likely works in one of two ways. The region may regulate how badly an individual feels after over-drinking. Alternatively, it may control how well an individual learns from their bad experience. Future work will resolve between the two.

"If we can understand the brain circuits that control sensitivity to alcohol's aversive effects, then we can start to get a handle on who may become a problem drinker," said Taha.

###

Listen to an interview with Sharif Taha on The Scope Radio

Read the article in PLOS ONE

Funding support was provided by the National Institutes Health under award MH094870, the March of Dimes Foundation, and the University of Utah.

Julie Kiefer | EurekAlert!

Further reports about: Ethanol alcohol binge drinking drink drinking effects inactivated lateral habenula rats

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>