Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A brain region for resisting alcohol's allure

03.04.2014

University of Utah neuroscientists finds the lateral habenula controls sensitivity to the negative effects of drinking alcohol

As recovering spring breakers are regretting binge drinking escapades, it may be hard for them to appreciate that there is a positive side to the nausea, sleepiness, and stumbling.


University of Utah neuroscientists find a brain region called the lateral habenula is involved in resisting the temptation of alcohol.

Credit: Andrew Haack

University of Utah neuroscientists report that when a region of the brain called the lateral habenula is chronically inactivated in rats, they repeatedly drink to excess and are less able to learn from the experience. The study, published online in PLOS ONE on April 2, has implications for understanding behaviors that drive alcohol addiction.

While complex societal pressures contribute to alcoholism, physiological factors are also to blame. Alcohol is a drug of abuse, earning its status because it tickles the reward system in the brain, triggering the release of feel-good neurotransmitters. The dreaded outcomes of overindulging serve the beneficial purpose of countering the pull of temptation, but little is understood about how those mechanisms are controlled.

U of U professor of neurobiology and anatomy Sharif Taha, Ph.D. and colleagues, tipped the balance that reigns in addictive behaviors by inactivating in rats a brain region called the lateral habenula. When the rats were given intermittent access to a solution of 20% alcohol over several weeks, they escalated their alcohol drinking more rapidly, and drank more heavily than control rats.

"In people, escalation of intake is what eventually separates a social drinker from someone who becomes an alcoholic," said Taha. "These rats drink amounts that are quite substantial. Legally they would be drunk if they were driving,"

The lateral habenula is activated by bad experiences, suggesting that without this region the rats may drink more because they fail to learn from the negative outcomes of overindulging. The investigators tested the idea by giving the rats a desirable, sweet juice then injecting them with a dose of alcohol large enough to cause negative effects.

"It's the same kind of learning that mediates your response in food poisoning. You taste something and then you get sick, and then of course you avoid that food in future meals," explained Taha.

Yet rats with an inactivated lateral habenula sought out the juice more than control animals, even though it meant a repeat of the bad experience.

"The way I look at it is the rewarding effects of drinking alcohol compete with the aversive effects," explained Andrew Haack, who is co-first author on the study with Chandni Sheth, both neuroscience graduate students. "When you take the aversive effects away, which is what we did when we inactivated the lateral habenula, the rewarding effects gain more purchase, and so it drives up drinking behavior."

The group's findings may help explain results from previous clinical investigations demonstrating that men who were less sensitive to the negative effects of alcohol drank more heavily, and were more likely to become problem drinkers later in life.

The researches think the lateral habenula likely works in one of two ways. The region may regulate how badly an individual feels after over-drinking. Alternatively, it may control how well an individual learns from their bad experience. Future work will resolve between the two.

"If we can understand the brain circuits that control sensitivity to alcohol's aversive effects, then we can start to get a handle on who may become a problem drinker," said Taha.

###

Listen to an interview with Sharif Taha on The Scope Radio

Read the article in PLOS ONE

Funding support was provided by the National Institutes Health under award MH094870, the March of Dimes Foundation, and the University of Utah.

Julie Kiefer | EurekAlert!

Further reports about: Ethanol alcohol binge drinking drink drinking effects inactivated lateral habenula rats

More articles from Studies and Analyses:

nachricht New study: How stable is the West Antarctic Ice Sheet?
09.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Online shopping might not be as green as we thought
08.02.2016 | University of Delaware

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

Chemical cages: New technique advances synthetic biology

10.02.2016 | Life Sciences

Engineering researchers use laser to 'weld' neurons

10.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>