Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A brain region for resisting alcohol's allure

03.04.2014

University of Utah neuroscientists finds the lateral habenula controls sensitivity to the negative effects of drinking alcohol

As recovering spring breakers are regretting binge drinking escapades, it may be hard for them to appreciate that there is a positive side to the nausea, sleepiness, and stumbling.


University of Utah neuroscientists find a brain region called the lateral habenula is involved in resisting the temptation of alcohol.

Credit: Andrew Haack

University of Utah neuroscientists report that when a region of the brain called the lateral habenula is chronically inactivated in rats, they repeatedly drink to excess and are less able to learn from the experience. The study, published online in PLOS ONE on April 2, has implications for understanding behaviors that drive alcohol addiction.

While complex societal pressures contribute to alcoholism, physiological factors are also to blame. Alcohol is a drug of abuse, earning its status because it tickles the reward system in the brain, triggering the release of feel-good neurotransmitters. The dreaded outcomes of overindulging serve the beneficial purpose of countering the pull of temptation, but little is understood about how those mechanisms are controlled.

U of U professor of neurobiology and anatomy Sharif Taha, Ph.D. and colleagues, tipped the balance that reigns in addictive behaviors by inactivating in rats a brain region called the lateral habenula. When the rats were given intermittent access to a solution of 20% alcohol over several weeks, they escalated their alcohol drinking more rapidly, and drank more heavily than control rats.

"In people, escalation of intake is what eventually separates a social drinker from someone who becomes an alcoholic," said Taha. "These rats drink amounts that are quite substantial. Legally they would be drunk if they were driving,"

The lateral habenula is activated by bad experiences, suggesting that without this region the rats may drink more because they fail to learn from the negative outcomes of overindulging. The investigators tested the idea by giving the rats a desirable, sweet juice then injecting them with a dose of alcohol large enough to cause negative effects.

"It's the same kind of learning that mediates your response in food poisoning. You taste something and then you get sick, and then of course you avoid that food in future meals," explained Taha.

Yet rats with an inactivated lateral habenula sought out the juice more than control animals, even though it meant a repeat of the bad experience.

"The way I look at it is the rewarding effects of drinking alcohol compete with the aversive effects," explained Andrew Haack, who is co-first author on the study with Chandni Sheth, both neuroscience graduate students. "When you take the aversive effects away, which is what we did when we inactivated the lateral habenula, the rewarding effects gain more purchase, and so it drives up drinking behavior."

The group's findings may help explain results from previous clinical investigations demonstrating that men who were less sensitive to the negative effects of alcohol drank more heavily, and were more likely to become problem drinkers later in life.

The researches think the lateral habenula likely works in one of two ways. The region may regulate how badly an individual feels after over-drinking. Alternatively, it may control how well an individual learns from their bad experience. Future work will resolve between the two.

"If we can understand the brain circuits that control sensitivity to alcohol's aversive effects, then we can start to get a handle on who may become a problem drinker," said Taha.

###

Listen to an interview with Sharif Taha on The Scope Radio

Read the article in PLOS ONE

Funding support was provided by the National Institutes Health under award MH094870, the March of Dimes Foundation, and the University of Utah.

Julie Kiefer | EurekAlert!

Further reports about: Ethanol alcohol binge drinking drink drinking effects inactivated lateral habenula rats

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>