Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2,000-year-old statue of an athlete sheds light on corrosion and other modern challenges

10.07.2009
Crystal Growth & Design

The restoration of a 2,000-year-old bronze sculpture of the famed ancient Greek athlete Apoxyomenos may help modern scientists understand how to prevent metal corrosion, discover the safest ways to permanently store nuclear waste, and understand other perplexing problems.

That's the conclusion of a new study on the so-called "biomineralization" of Apoxyomenos appearing in the current issue of ACS' Crystal Growth & Design, a bi-monthly journal. Best known as "The Scraper," the statue depicts an athlete scraping sweat and dust from his body with a small curved instrument.

In the report, Davorin Medakovic and colleagues point out that Apoxyomenos was discovered in 1998 on floor of the Adriatic Sea. While the discovery was a bonanza for archaeologists and art historians, it also proved to be an unexpected boon to scientists trying to understand biomineralization. That's the process in which animals and plants use minerals from their surroundings and form shells and bone. Apoxyomenos was encrusted with such deposits.

"As studies of long-term biofouled manmade structures are limited, the finding of an ancient sculpture immersed for two millennia in the sea provided a unique opportunity to probe the long-term impact of a specific artificial substrate on biomineralizng organisms and the effects of biocorrosion," the report said. By evaluating the mineral layers and fossilized organisms on the statue, the researchers were able to evaluate how underwater fouling organisms and communities interacted with the statue as well as how certain mineral deposits on the bronze sculpture slowed its deterioration.

ARTICLE #3 FOR IMMEDIATE RELEASE
"Biomineralization on an Ancient Sculpture of the Apoxyomenos: Effects of a Metal-Rich Environment on Crystal Growth in Living Organisms"
CONTACT:
Davorin Medakovic, Ph.D.
Ruder Boskovic Institute
Center for Marine Research Rovinj
Phone: 385-52-80-47-13
Fax: 385-52-81-34-96
Rovinj, Croatia
Email: medakovic@cim.irb.hr

Michael Woods | EurekAlert!
Further information:
http://www.acs.org
http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/cg900402b

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>