Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can't Place That Face?

The trouble may be in your neurons, TAU's "Face Lab" discovers

A specific area in our brains is responsible for processing information about human and animal faces, both how we recognize them and how we interpret facial expressions. Now, Tel Aviv University research is exploring what makes this highly specialized part of the brain unique, a first step to finding practical applications for that information.

In her "Face Lab" at Tel Aviv University, Dr. Galit Yovel of TAU's Department of Psychology is trying to understand the mechanisms at work in the face area of the brain called the "fusiform gyrus" of the brain. She is combining cognitive psychology with techniques like brain imaging and electrophysiology to study how the brain processes information about faces. Her most recent research on the brain's face-processing mechanisms was published in the Journal of Neuroscience and Human Brain Mapping.

The study of face recognition does more than provide an explanation for embarrassing memory lapses. For instance, it may help business executives better match names with faces, and more important can lead to better facial recognition software to identify terrorists or criminals. Similar to faces, bodies are also processed by distinct brain areas. How we perceive faces is not totally intuitive, she says, and therefore raises the question of how this information is combined in our brain to understand how separate face and body areas generate a whole body-image impression.

Identifying "face blindness"

In her research, Dr. Yovel has found that we are better able to recognize faces when we regularly see and interact with them in meaningful settings. It's as though the face-processing sections of the brain — the fusiform face area being the most distinct — recognizes faces holistically. Additions to your face, such as a beard or glasses, are assimilated into or incorporated into the face recognition gestalt of the brain, unlike other elements that are irrelevant to facial recognition, such as the chair you're sitting on. This may be why fashions in hairstyle and eyewear have become so important to personal appearance, she theorizes.

The inability to recognize faces is more common than most people think. Dr. Yovel says that two percent of all people are born with "face blindness," scientifically known as prosopagnosia. She hopes her research will enable these people to train themselves, via software and other methods, to better differentiate one face from another — especially when the face is that of a loved one.

Recognizing the faces you meet

"Faces are important," says Dr. Yovel, who first began to study the neurological basis of face recognition as a post-doctoral student at the Massachusetts Institute of Technology. "We meet so many people every day, on the street or at work, and should know whether or not each face is important to us. In principle, faces are very similar to one another. That's probably why we've evolved these complex and specialized face areas in the brain — so that we can more accurately discriminate among the countless faces we encounter throughout our lives."

Dr. Yovel hopes her studies will lead to new algorithms that can help computers do a better job of recognizing faces, as well as help people who somehow lack this critical social skill. She is currently collaborating with computer scientists at Tel Aviv University to explore new computational algorithms for facial recognition.

George Hunka | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>