Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can't Place That Face?

29.07.2010
The trouble may be in your neurons, TAU's "Face Lab" discovers

A specific area in our brains is responsible for processing information about human and animal faces, both how we recognize them and how we interpret facial expressions. Now, Tel Aviv University research is exploring what makes this highly specialized part of the brain unique, a first step to finding practical applications for that information.

In her "Face Lab" at Tel Aviv University, Dr. Galit Yovel of TAU's Department of Psychology is trying to understand the mechanisms at work in the face area of the brain called the "fusiform gyrus" of the brain. She is combining cognitive psychology with techniques like brain imaging and electrophysiology to study how the brain processes information about faces. Her most recent research on the brain's face-processing mechanisms was published in the Journal of Neuroscience and Human Brain Mapping.

The study of face recognition does more than provide an explanation for embarrassing memory lapses. For instance, it may help business executives better match names with faces, and more important can lead to better facial recognition software to identify terrorists or criminals. Similar to faces, bodies are also processed by distinct brain areas. How we perceive faces is not totally intuitive, she says, and therefore raises the question of how this information is combined in our brain to understand how separate face and body areas generate a whole body-image impression.

Identifying "face blindness"

In her research, Dr. Yovel has found that we are better able to recognize faces when we regularly see and interact with them in meaningful settings. It's as though the face-processing sections of the brain — the fusiform face area being the most distinct — recognizes faces holistically. Additions to your face, such as a beard or glasses, are assimilated into or incorporated into the face recognition gestalt of the brain, unlike other elements that are irrelevant to facial recognition, such as the chair you're sitting on. This may be why fashions in hairstyle and eyewear have become so important to personal appearance, she theorizes.

The inability to recognize faces is more common than most people think. Dr. Yovel says that two percent of all people are born with "face blindness," scientifically known as prosopagnosia. She hopes her research will enable these people to train themselves, via software and other methods, to better differentiate one face from another — especially when the face is that of a loved one.

Recognizing the faces you meet

"Faces are important," says Dr. Yovel, who first began to study the neurological basis of face recognition as a post-doctoral student at the Massachusetts Institute of Technology. "We meet so many people every day, on the street or at work, and should know whether or not each face is important to us. In principle, faces are very similar to one another. That's probably why we've evolved these complex and specialized face areas in the brain — so that we can more accurately discriminate among the countless faces we encounter throughout our lives."

Dr. Yovel hopes her studies will lead to new algorithms that can help computers do a better job of recognizing faces, as well as help people who somehow lack this critical social skill. She is currently collaborating with computer scientists at Tel Aviv University to explore new computational algorithms for facial recognition.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>