Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why can't chimps speak?

12.11.2009
Study links evolution of single gene to human capacity for language

If humans are genetically related to chimps, why did our brains develop the innate ability for language and speech while theirs did not?

Scientists suspect that part of the answer to the mystery lies in a gene called FOXP2. When mutated, FOXP2 can disrupt speech and language in humans. Now, a UCLA/Emory study reveals major differences between how the human and chimp versions of FOXP2 work, perhaps explaining why language is unique to humans.

Published Nov. 11 in the online edition of the journal Nature, the findings provide insight into the evolution of the human brain and may point to possible drug targets for human disorders characterized by speech disruption, such as autism and schizophrenia.

"Earlier research suggests that the amino-acid composition of human FOXP2 changed rapidly around the same time that language emerged in modern humans," said Dr. Daniel Geschwind, Gordon and Virginia MacDonald Distinguished Chair in Human Genetics at the David Geffen School of Medicine at UCLA. "Ours is the first study to examine the effect of these amino-acid substitutions in FOXP2 in human cells.

"We showed that the human and chimp versions of FOXP2 not only look different but function differently too," said Geschwind, who is currently a visiting professor at the Institute of Psychiatry at King's College London. "Our findings may shed light on why human brains are born with the circuitry for speech and language and chimp brains are not."

FOXP2 switches other genes on and off. Geschwind's lab scoured the genome to determine which genes are targeted by human FOXP2. The team used a combination of human cells, human tissue and post-mortem brain tissue from chimps that died of natural causes.

The chimp brain dissections were performed in the laboratory of coauthor Todd Preuss, associate research professor of neuroscience at Emory University's Yerkes National Primate Research Center.

The scientists focused on gene expression — the process by which a gene's DNA sequence is converted into cellular proteins.

To their surprise, the researchers discovered that the human and chimp forms of FOXP2 produce different effects on gene targets in the human cell lines.

"We found that a significant number of the newly identified targets are expressed differently in human and chimpanzee brains," Geschwind said. "This suggests that FOXP2 drives these genes to behave differently in the two species."

The research demonstrates that mutations believed to be important to FOXP2's evolution in humans change how the gene functions, resulting in different gene targets being switched on or off in human and chimp brains.

"Genetic changes between the human and chimp species hold the clues for how our brains developed their capacity for language," said first author Genevieve Konopka, a postdoctoral fellow in neurology at the David Geffen School of Medicine at UCLA. "By pinpointing the genes influenced by FOXP2, we have identified a new set of tools for studying how human speech could be regulated at the molecular level."

The discovery will provide insight into the evolution of humans' ability to learn through the use of higher cognitive skills, such as perception, intuition and reasoning.

"This study demonstrates how critical chimps and macaques are for studying humans," noted Preuss. "They open a window into understanding how we evolved into who we are today."

Because speech problems are common to both autism and schizophrenia, the new molecular pathways will also shed light on how these disorders disturb the brain's ability to process language.

The National Institute of Mental Health, the A.P. Giannini Foundation and the National Alliance for Research on Schizophrenia and Depression funded the study.

The UCLA coauthors included Jamee Bomar, Giovanni Coppola, Fuying Gao, Zophonias Jonsson, Sophia Peng, Kellen Winden and James Wohlschlegel.

Elaine Schmidt, eschmidt@mednet.ucla.edu (through Nov.10)
(310) 794-2272
Mark Wheeler, mwheeler@mednet.ucla.edu (after Nov. 10)
(310) 794-2265
Emily Rios, erios@emory.edu
(404) 727-7732

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>