Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Smart growth' strategies curb car use, greenhouse gas emissions, SF State study suggests

14.09.2012
A new study finds that smart growth approaches to urban planning could substantially reduce the number of miles that residents drive in a year. The research was published this week in The B.E. Journal of Economic Analysis and Policy.

Smart growth focuses on the development of compact, walkable cities with houses and jobs located close together. By shortening residents' commutes, this form of urban design aims to cut transportation-related energy use and greenhouse gas emissions. California is already pursuing smart growth in order to meet emissions reductions set by the state's Global Warming Solutions Act (AB 32).

In a behavioral economics study, researchers at San Francisco State University found that a 10 percent increase in a city's smart growth features -- including housing density, jobs per capita and public transit infrastructure -- would lead to a 20 percent decrease in the number of vehicle miles traveled per household, per year.

"We found that changing the way cities are designed would significantly reduce travel demand," said Sudip Chattopadhyay, professor and chair of economics at SF State. "People's travel habits would change, and they would drive less."

These latest results stand in contrast to previous studies that have suggested that smart growth only has a small impact on transport demand. Chattopadhyay says that in the past economists have struggled to find the right methodologies to understand how people's behavior changes in response to urban planning.

For the present study, Chattopadhyay developed an innovative way to predict people's behavior, particularly how people make decisions about where to live. The study focused on 18 urban areas across the United States and used census data and information from the 2001 National Household Travel Survey and the National Transit Database.

The study found that smart growth strategies yield greater reductions in car use compared to the use of fuel tax increases. It suggests that a 10 percent increase in the dollar cost of driving one mile would result in an 18 percent decrease in annual vehicle miles traveled per household, compared to a 20 percent decrease from smart growth strategies.

"It's only a few percent points but it is a significant difference," Chattopadhyay said. "Smart growth is a more gradual, long-lasting change and it generates employment. Tax increases can be implemented more quickly but they are subject to change depending on the political situation."

Chattopadhyay notes that there are other benefits of smart growth not measured in his study. Neighborhood design that encourages walking, for example, may improve residents' health, and the development of compact cities might prevent urban sprawl and help preserve open space.

"Do Smart Growth Strategies Have a Role in Curbing Vehicle Miles Traveled? A Further Assessment Using Household Level Survey Data" was authored by Sudip Chattopadhyay and Emily Taylor, who graduated from SF State with a master's in economics in 2010. It was published online on Sept. 11, 2012 in The B.E. Journal of Economic Analysis and Policy.

The paper is available online at: http://www.degruyter.com/view/j/bejeap.2012.12.issue-1/1935-1682.3224/1935-1682.3224.xml

Elaine Bible | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>