Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Shoot-'em-up' video game increases teenagers' science knowledge

09.12.2009
Students navigate microscopic world of immune system proteins and cells to save patient with bacterial infection

While navigating the microscopic world of immune system proteins and cells to save a patient suffering from a raging bacterial infection, young teenage players of the "Immune Attack" video game measurably improved their understanding of cell biology and molecular science, according to a study that will be presented at the American Society for Cell Biology (ASCB) 49th Annual Meeting, Dec. 5-9, 2009 in San Diego.

Remotely controlling the Microbot Explorer, named for its 25-micron diameter, the teenagers traveled through the bloodstream and connective tissue, interacting at the nanometer scale with receptors, hormones and lipids that have been drawn to appear like the schematics that scientists use in their own models.

Game actions, such as the capture of white blood cells by proteins on blood vessel walls, mimic activities that occur in nature.

"Immune Attack," a "third person shooter," three-dimensional video game, was devised by Melanie A. Stegman, Ph.D., and Michelle L. Fox of the Learning Technologies Program at the Federation of American Scientists in Washington, D.C.

Collaborating directly with teachers, Stegman and Fox evaluated "Immune Attack" with 180 seventh grade students.

The students' knowledge, comprehension of game dynamics and confidence with the material were much higher than the 142 students who were tested after playing the Medical Mysteries Series video game, which covers non-molecular aspects of infectious disease.

"Additionally, we have used 'Immune Attack' to inspire high school computer programming classes to create their own new videos games based on 'Immune Attack,'" Stegman added.

The first edition of "Immune Attack" is available for free download at www.ImmuneAttack.org. "Immune Attack 2.0" should be released in early 2010.

Melanie Ann Stegman, Ph.D. (MSTEGMAN@FAS.org; (202) 454-4681) will present "Immune Attack, a Video Game in the Molecular World, at Tuesday, Dec. 8, 11:00 a.m. – 12:30 p.m. Pre-College and College Science Education, Program #2356, Board #B733, Exhibit Halls D-H.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>