Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Shelf life' of blood? Shorter than we think

04.03.2013
A small study from Johns Hopkins adds to the growing body of evidence that red blood cells stored longer than three weeks begin to lose the capacity to deliver oxygen-rich cells where they may be most needed.

In a report published online in the journal Anesthesia & Analgesia, the Johns Hopkins investigators say red cells in blood stored that long gradually lose the flexibility required to squeeze through the body's smallest capillaries to deliver oxygen to tissue. Moreover, they say, that capacity is not regained after transfusion into patients during or after surgery.

"There's more and more information telling us that the shelf life of blood may not be six weeks, which is what the blood banks consider standard," says study leader Steven M. Frank, M.D., an associate professor of anesthesiology and critical care medicine at the Johns Hopkins University School of Medicine. "If I were having surgery tomorrow, I'd want the freshest blood they could find."

Frank acknowledges that blood banks do not have enough fresh blood for everybody, and that shorter storage periods would result in diminished inventory. But he says that the current practice of transfusing blood stored up to six weeks may need to be reconsidered.

One previous, large study published in the New England Journal of Medicine has already shown that cardiac surgery patients who received blood stored longer than three weeks were almost twice as likely to die as patients who got blood that had been stored for just 10 days.

For the new study, Frank and his colleagues enrolled 16 patients scheduled to have spinal fusion surgery, a type of operation that typically requires blood transfusions. Six of the patients received five or more units of blood, while 10 needed three or fewer units. The researchers drew samples from every bag of blood used — 53 in total — and measured the flexibility of the red blood cells. What they found is that blood older than 3 weeks was more likely to have less flexible red blood cell membranes, a condition that may make it more difficult for blood to deliver oxygen, Frank says.

The team also took blood samples from patients in the three days following surgery. Even though the blood cells were out of storage and back in biological environments with proper pH (acidity), electrolytes and oxygen levels, the injury to the red cells was not reversible and appeared to be permanent. The damaged blood cells would likely remain dysfunctional for their life cycle limit, which is up to 120 days, Frank says.

Frank also noted that patients in the study who got fewer units of blood had healthier red cells overall, even though the blood was just as old and showed cell damage. He says it is likely that a small amount of these problem cells make less of a difference than when a large number of damaged cells are present.

According to the research report, the average age of the blood given in the study was more than 3 weeks. Only three samples in the study were 2 weeks old or less. One reason for the lack of availability of fresher bloods for adults, Frank says, is the routine practice of giving pediatric patients priority for the freshest units.

In fact, he notes, blood banks dispense the oldest blood first so that it doesn't exceed its shelf life before it can be used. "As a colleague said, it's like how they sell milk in the grocery store — they put the oldest cartons out front so they can sell them before they expire," Frank says.

Two large randomized controlled studies, one at many centers across the United States, including Johns Hopkins, and one in Canada, are under way to determine the relative safety of older versus newer blood, and the results are expected next year. Frank says blood banks need to be prepared to change practice if those studies show that a six-week shelf life for blood is just too long.

The study was supported in part by the National Institutes of Health's National Institute on Aging (R01 AG021523) and National Heart, Lung, and Blood Institute (R01 HL092259-01).

Other Johns Hopkins researchers involved in the study include Bagrat Abazyan, M.D.; Masahiro Ono, M.D.; Charles W. Hogue, M.D.; David B. Cohen, M.D., M.P.H.; Daniel E. Berkowitz, M.D.; Paul M. Ness, M.D.; and Viachaslau M. Barodka, M.D.

Ness has consulted for Terumo BCT and Fenwal Labs, both companies involved with blood storage. Nothing in this study directly benefits these companies. The terms of these arrangements are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

For more information:

http://www.hopkinsmedicine.org/anesthesiology/faculty/bios/frank.shtml

http://www.hopkinsmedicine.org/news/media/releases/blood_transfusions_
still_overused_and_may_do_more_harm_than_good_in_some_patients

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Medicine Shelf blood cell blood sample cell membrane red blood cells

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>