Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's all coming back to me now: Researchers find caffeine enhances memory

13.01.2014
For some, it's the tradition of steeping tealeaves to brew the perfect cup of tea. For others, it's the morning shuffle to a coffee maker for a hot jolt of java. Then there are those who like their wake up with the kind of snap and a fizz usually found in a carbonated beverage.

Regardless of the routine, the consumption of caffeine is the energy boost of choice for millions to wake up or stay up. Now, however, researchers at the Johns Hopkins University have found another use for the stimulant: memory enhancer.

Michael Yassa, assistant professor of psychological and brain sciences in the Krieger School of Arts and Sciences at Johns Hopkins, and his team of scientists found that caffeine has a positive effect on long-term memory in humans. Their research, published by the journal Nature Neuroscience, shows that caffeine enhances certain memories at least up to 24 hours after it is consumed.

"We've always known that caffeine has cognitive-enhancing effects, but its particular effects on strengthening memories and making them resistant to forgetting has never been examined in detail in humans," said Yassa, senior author of the paper. "We report for the first time a specific effect of caffeine on reducing forgetting over 24 hours."

The Johns Hopkins researchers conducted a double-blind trial; which participants who did not regularly eat or drink caffeinated products received either a placebo or a 200-milligram caffeine tablet five minutes after studying a series of images. Salivary samples were taken from the participants before they took the tablets to measure their caffeine levels. Samples were taken again one, three and 24 hours afterwards.

The next day, both groups were tested on their ability to recognize images from the previous day's study session. On the test, some of the visuals were the same as from the day before, some were new additions and some were similar but not the same as the items previously viewed. More members of the caffeine group were able to correctly identify the new images as "similar" to previously viewed images versus erroneously citing them as the same.

The brain's ability to recognize the difference between two similar but not identical items, called pattern separation, reflects a deeper level of memory retention, the researchers said.

"If we used a standard recognition memory task without these tricky similar items, we would have found no effect of caffeine," Yassa said. "However, using these items requires the brain to make a more difficult discrimination -- what we call pattern separation, which seems to be the process that is enhanced by caffeine in our case."

The memory center in the human brain is the hippocampus, a seahorse-shaped area in the medial temporal lobe of the brain. The hippocampus is the switchbox for all short-term and long-term memories. Most research done on memory -- the effects of concussions in athletics to war-related head injuries to dementia in the aging population -- are focused on this area of the brain.

Until now, caffeine's effects on long-term memory had not been examined in detail. Of the few studies done, the general consensus was that caffeine has little or no effect on long-term memory retention.

The research is different from prior experiments because the subjects took the caffeine tablets only after they had viewed and attempted to memorize the images.

"Almost all prior studies administered caffeine before the study session, so if there is an enhancement, it's not clear if it's due to caffeine's effects on attention, vigilance, focus or other factors. By administering caffeine after the experiment, we rule out all of these effects and make sure that if there is an enhancement, it's due to memory and nothing else," said Yassa.

According to the U.S. Food and Drug Administration, 90 percent of people worldwide consume caffeine in one form or another. In the United States, 80 percent of adults consume caffeine every day. The average adult has an intake of about 200 milligrams -- the same amount used in the Yassa study -- or roughly one strong cup of coffee or two small cups of coffee per day.

Yassa's team completed the research at Johns Hopkins before his lab moved to the University of California-Irvine at the start of this year.

"The next step for us is to figure out the brain mechanisms underlying this enhancement," he said. "We can use brain-imaging techniques to address these questions. We also know that caffeine is associated with healthy longevity and may have some protective effects from cognitive decline like Alzheimer's disease. These are certainly important questions for the future."

The lead author of the paper is Daniel Borota, an undergraduate student in Yassa's lab who received an undergraduate research award from Johns Hopkins to conduct the study.

Additional authors, all from Johns Hopkins, are: Elizabeth Murray, a research program coordinator in the Department of Psychological and Brain Sciences; John Toscano, professor in the Department of Chemistry; Gizem Kecili, a graduate student also in the Chemistry Department and Allen Chang, Maria Ly and Joseph Watabe, all undergraduates in the Department of Psychological and Brain Sciences.

This research was supported by grants number P50 AG05146 and R01 AG034613 from the National Institute on Aging as well as CHE-1213438 from the National Science Foundation.

Related links:
Michael Yassa: http://pbs.jhu.edu/research/Yassa/directory/yassa.html
Yassa Lab at UC-Irvine: http://yassalab.org/

Latarsha Gatlin | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>