Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's all coming back to me now: Researchers find caffeine enhances memory

13.01.2014
For some, it's the tradition of steeping tealeaves to brew the perfect cup of tea. For others, it's the morning shuffle to a coffee maker for a hot jolt of java. Then there are those who like their wake up with the kind of snap and a fizz usually found in a carbonated beverage.

Regardless of the routine, the consumption of caffeine is the energy boost of choice for millions to wake up or stay up. Now, however, researchers at the Johns Hopkins University have found another use for the stimulant: memory enhancer.

Michael Yassa, assistant professor of psychological and brain sciences in the Krieger School of Arts and Sciences at Johns Hopkins, and his team of scientists found that caffeine has a positive effect on long-term memory in humans. Their research, published by the journal Nature Neuroscience, shows that caffeine enhances certain memories at least up to 24 hours after it is consumed.

"We've always known that caffeine has cognitive-enhancing effects, but its particular effects on strengthening memories and making them resistant to forgetting has never been examined in detail in humans," said Yassa, senior author of the paper. "We report for the first time a specific effect of caffeine on reducing forgetting over 24 hours."

The Johns Hopkins researchers conducted a double-blind trial; which participants who did not regularly eat or drink caffeinated products received either a placebo or a 200-milligram caffeine tablet five minutes after studying a series of images. Salivary samples were taken from the participants before they took the tablets to measure their caffeine levels. Samples were taken again one, three and 24 hours afterwards.

The next day, both groups were tested on their ability to recognize images from the previous day's study session. On the test, some of the visuals were the same as from the day before, some were new additions and some were similar but not the same as the items previously viewed. More members of the caffeine group were able to correctly identify the new images as "similar" to previously viewed images versus erroneously citing them as the same.

The brain's ability to recognize the difference between two similar but not identical items, called pattern separation, reflects a deeper level of memory retention, the researchers said.

"If we used a standard recognition memory task without these tricky similar items, we would have found no effect of caffeine," Yassa said. "However, using these items requires the brain to make a more difficult discrimination -- what we call pattern separation, which seems to be the process that is enhanced by caffeine in our case."

The memory center in the human brain is the hippocampus, a seahorse-shaped area in the medial temporal lobe of the brain. The hippocampus is the switchbox for all short-term and long-term memories. Most research done on memory -- the effects of concussions in athletics to war-related head injuries to dementia in the aging population -- are focused on this area of the brain.

Until now, caffeine's effects on long-term memory had not been examined in detail. Of the few studies done, the general consensus was that caffeine has little or no effect on long-term memory retention.

The research is different from prior experiments because the subjects took the caffeine tablets only after they had viewed and attempted to memorize the images.

"Almost all prior studies administered caffeine before the study session, so if there is an enhancement, it's not clear if it's due to caffeine's effects on attention, vigilance, focus or other factors. By administering caffeine after the experiment, we rule out all of these effects and make sure that if there is an enhancement, it's due to memory and nothing else," said Yassa.

According to the U.S. Food and Drug Administration, 90 percent of people worldwide consume caffeine in one form or another. In the United States, 80 percent of adults consume caffeine every day. The average adult has an intake of about 200 milligrams -- the same amount used in the Yassa study -- or roughly one strong cup of coffee or two small cups of coffee per day.

Yassa's team completed the research at Johns Hopkins before his lab moved to the University of California-Irvine at the start of this year.

"The next step for us is to figure out the brain mechanisms underlying this enhancement," he said. "We can use brain-imaging techniques to address these questions. We also know that caffeine is associated with healthy longevity and may have some protective effects from cognitive decline like Alzheimer's disease. These are certainly important questions for the future."

The lead author of the paper is Daniel Borota, an undergraduate student in Yassa's lab who received an undergraduate research award from Johns Hopkins to conduct the study.

Additional authors, all from Johns Hopkins, are: Elizabeth Murray, a research program coordinator in the Department of Psychological and Brain Sciences; John Toscano, professor in the Department of Chemistry; Gizem Kecili, a graduate student also in the Chemistry Department and Allen Chang, Maria Ly and Joseph Watabe, all undergraduates in the Department of Psychological and Brain Sciences.

This research was supported by grants number P50 AG05146 and R01 AG034613 from the National Institute on Aging as well as CHE-1213438 from the National Science Foundation.

Related links:
Michael Yassa: http://pbs.jhu.edu/research/Yassa/directory/yassa.html
Yassa Lab at UC-Irvine: http://yassalab.org/

Latarsha Gatlin | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>