Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Recruitment by genotype' for genetic research poses ethical challenges, study finds

29.06.2012
A potentially powerful strategy for studying the significance of human genetic variants is to recruit people identified by previous genetic research as having particular variants.

But that strategy poses ethical challenges to informed consent, as well as potential risks to the people recruited, and it is unlikely that there is a "one-size-fits-all" solution, concludes an article in IRB: Ethics & Human Research.

The advantage of "recruitment by genotype" is that it eliminates the time-consuming, expensive process of screening new populations to find subjects who have the genetic variant of interest. The ethical challenge is that it requires the disclosure to individuals of genetic information discovered about them in prior research – for example, research on tissue samples that they donated for scientific study. Such information can carry risks and harms because it is often preliminary and easily misinterpreted, and it may be unwanted by some individuals. But without this information, potential participants would be uninformed about why they are being recruited for the new study.

As the first step toward developing ethical guidelines on genotype-driven recruitment, the authors conducted an online survey of 201 chairs of institutional review boards (IRBs). The survey asked a series of questions about 1) the conditions that should be met before recontacting individuals for genetic research recruitment, and 2) whether individuals' genetic research results from the first study should be disclosed as part of the recruitment process for the second study.

The responses were diverse and in some cases contradictory. Only 37 percent of IRB chairs agreed with the general statement, "Researchers should be allowed to contact participants in one genetic research study in order to invite their participation in another genetic research study." But more detailed questions revealed greater willingness of permit contacting of participants if certain conditions were met. For example, 91 percent said that it would be important that the possibility of such contact was disclosed during the consent process for the first study.

However, when the researchers presented the respondents with a hypothetical scenario in which the original consent form did not mention the possibility of contact about future research, 51 percent of the IRB chairs said they definitely or probably would allow the researcher to contact eligible participants anyway. The findings suggest that while consent disclosures are important and highly preferable, "not all chairs necessarily view them as imperative," the authors concluded.

There was a similar variation in response to questions about offering people information about their genetic results from previous studies. Only 42 percent of IRB chairs agreed with the general statement, "Each participant should be offered his/her individual genetic results from the first study when contacted about taking part in the second study." But most said that specific conditions would be important in determining whether it was ethically acceptable to reveal that information: 87 percent of respondents said that statements in the consent form for the first study concerning disclosure of individual genetic research results would be important, 86 percent cited the level of clinical validity (defined as "the accuracy with which the presence of a gene variant predicts the presence of a clinical condition or predisposition"), and 76 percent cited the level of clinical utility (defined as "the availability and effectiveness of interventions aimed at avoiding the adverse clinical consequences of a gene variant").

The survey concluded with questions about specific ethical dilemmas involved in genotype-driven research recruitment. For example, asked to weigh the value of avoiding disclosure of genetic information with uncertain clinical utility against the value of promoting participants' autonomy in determining the utility of the information, 46 percent chose disclosure and 39 percent chose autonomy.

"A major consequence of these findings is that it is unlikely that there will be a "one-size-fits-all solution, but rather several approaches to genotype-driven recruitment that may be ethically acceptable depending on a variety of context-dependent factors," the authors concluded. The two strongest context-dependent factors identified in the survey were 1) disclosure made during informed consent for the original study, and 2) the clinical validity (and, to a slightly lesser degree, the clinical utility) of the information.

The authors are Laura M. Beskow, MPH, PhD, assistant research professor of the Duke Institute for Genome Sciences and Policy at Duke University; Emily E. Namey, MA, clinical research coordinator, Duke Institute for Genome Sciences and Policy; Patrick R. Miller, PhD, postdoctoral fellow in the Social Science Research Institute at Duke University; Daniel K. Nelson, MS, CIP, director of the Office of Human Research Ethics and professor at the University of North Carolina, Chapel Hill; and Alexandra Cooper, PhD, associate director for education and training at the Social Science Research Institute at Duke University.

Michael Turton | EurekAlert!
Further information:
http://www.thehastingscenter.org

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>