Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Obese but happy gene' challenges the common perception of link between depression and obesity

20.11.2012
Researchers at McMaster University have discovered new genetic evidence about why some people are happier than others.

McMaster scientists have uncovered evidence that the gene FTO – the major genetic contributor to obesity – is associated with an eight per cent reduction in the risk of depression. In other words, it's not just an obesity gene but a "happy gene" as well.

The research appears in a study published today in the journal Molecular Psychiatry. The paper was produced by senior author David Meyre, associate professor in clinical epidemiology and biostatistics at the Michael G. DeGroote School of Medicine and a Canada Research Chair in genetic epidemiology; first author Dr. Zena Samaan, assistant professor, Department of Psychiatry and Behavioural Neurosciences, and members of the Population Health Research Institute of McMaster University and Hamilton Health Sciences.

"The difference of eight per cent is modest and it won't make a big difference in the day-to-day care of patients," Meyre said. "But, we have discovered a novel molecular basis for depression."

In the past, family studies on twins, and brothers and sisters, have shown a 40 per cent genetic component in depression. However, scientific studies attempting to associate genes with depression have been "surprisingly unsuccessful" and produced no convincing evidence so far, Samaan said.

The McMaster discovery challenges the common perception of a reciprocal link between depression and obesity: That obese people become depressed because of their appearance and social and economic discrimination; depressed individuals may lead less active lifestyles and change eating habits to cope with depression that causes them to become obese.

"We set out to follow a different path, starting from the hypothesis that both depression and obesity deal with brain activity. We hypothesized that obesity genes may be linked to depression," Meyre said.

The McMaster researchers investigated the genetic and psychiatric status of patients enrolled in the EpiDREAM study led by the Population Health Research Institute, which analyzed 17,200 DNA samples from participants in 21 countries.

In these patients, they found the previously identified obesity predisposing genetic variant in FTO was associated with an eight per cent reduction in the risk of depression. They confirmed this finding by analyzing the genetic status of patients in three additional large international studies.

Meyre said the fact the obesity gene's same protective trend on depression was found in four different studies supports their conclusion. It is the "first evidence" that an FTO obesity gene is associated with protection against major depression, independent of its effect on body mass index, he said.

This is an important discovery as depression is a common disease that affects up to one in five Canadians, said Samaan.

For further information and to arrange interviews, please contact:

Veronica McGuire
Media Relations
Faculty of Health Sciences
McMaster University
905-525-9140 ext. 22169
vmcguir@mcmaster.ca
Thana Dharmarajah
Media Relations
Faculty of Health Sciences
McMaster University
905-525-9140 ext. 22196
dharmar@mcmaster.ca

Thana Dharmarajah | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>