Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Obese but happy gene' challenges the common perception of link between depression and obesity

20.11.2012
Researchers at McMaster University have discovered new genetic evidence about why some people are happier than others.

McMaster scientists have uncovered evidence that the gene FTO – the major genetic contributor to obesity – is associated with an eight per cent reduction in the risk of depression. In other words, it's not just an obesity gene but a "happy gene" as well.

The research appears in a study published today in the journal Molecular Psychiatry. The paper was produced by senior author David Meyre, associate professor in clinical epidemiology and biostatistics at the Michael G. DeGroote School of Medicine and a Canada Research Chair in genetic epidemiology; first author Dr. Zena Samaan, assistant professor, Department of Psychiatry and Behavioural Neurosciences, and members of the Population Health Research Institute of McMaster University and Hamilton Health Sciences.

"The difference of eight per cent is modest and it won't make a big difference in the day-to-day care of patients," Meyre said. "But, we have discovered a novel molecular basis for depression."

In the past, family studies on twins, and brothers and sisters, have shown a 40 per cent genetic component in depression. However, scientific studies attempting to associate genes with depression have been "surprisingly unsuccessful" and produced no convincing evidence so far, Samaan said.

The McMaster discovery challenges the common perception of a reciprocal link between depression and obesity: That obese people become depressed because of their appearance and social and economic discrimination; depressed individuals may lead less active lifestyles and change eating habits to cope with depression that causes them to become obese.

"We set out to follow a different path, starting from the hypothesis that both depression and obesity deal with brain activity. We hypothesized that obesity genes may be linked to depression," Meyre said.

The McMaster researchers investigated the genetic and psychiatric status of patients enrolled in the EpiDREAM study led by the Population Health Research Institute, which analyzed 17,200 DNA samples from participants in 21 countries.

In these patients, they found the previously identified obesity predisposing genetic variant in FTO was associated with an eight per cent reduction in the risk of depression. They confirmed this finding by analyzing the genetic status of patients in three additional large international studies.

Meyre said the fact the obesity gene's same protective trend on depression was found in four different studies supports their conclusion. It is the "first evidence" that an FTO obesity gene is associated with protection against major depression, independent of its effect on body mass index, he said.

This is an important discovery as depression is a common disease that affects up to one in five Canadians, said Samaan.

For further information and to arrange interviews, please contact:

Veronica McGuire
Media Relations
Faculty of Health Sciences
McMaster University
905-525-9140 ext. 22169
vmcguir@mcmaster.ca
Thana Dharmarajah
Media Relations
Faculty of Health Sciences
McMaster University
905-525-9140 ext. 22196
dharmar@mcmaster.ca

Thana Dharmarajah | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>