Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Needle-free' intervention as natural vaccine against malaria

12.08.2010
A study published in the journal Science Translation Medicine proposes that preventative treatment with affordable and safe antibiotics in people living in areas with intense malaria transmission has the potential to act as a 'needle-free' natural vaccine against malaria and may likely provide an additional valuable tool for controlling and/or eliminating malaria in resource-poor settings.

The research, conducted by a multinational team of researchers from the London School of Tropical Medicine and Hygiene (LSHTM), Heidelberg University School of Medicine, the Max Planck Institute for Infection Biology, Germany, and the KEMRI-Wellcome Trust Research Programme, Kenya, found that infection with malaria parasites during administration of preventative antibiotics developed a vaccine-like immunity against re-infection.

Approximately half the world's population is at risk of malaria and about one million people (mainly children living in sub-Saharan Africa) die each year from malaria, a mosquito-borne parasitic disease. Malaria parasites are transmitted to people through the bite of an infected Anopheles mosquito. Only an estimated 10 to 100 parasites per mosquito bite invade the liver where they replicate. About a week after infection, tens of thousands of parasites are released into the bloodstream where they are responsible for malaria's recurring fevers and cause life-threatening complications.

In this study, the researchers showed that the antibiotics caused a cellular defect in malaria parasites during their passage into the liver of the infected host. This action did not prevent parasite replication in the liver but blocked the malaria parasite's fatal conversion to the disease causing blood stage. The very late arrest of parasites in the liver allowed the immune system to mount a robust defence against subsequent infections, akin to experimental whole organism vaccine strategies using attenuated parasites.

As already established, antibiotics, especially in combination with other anti-malarial drugs, are safe and affordable drugs against an acute malaria infection. The novel concept is to take advantage of the immunological benefit of antibiotic prophylaxis in areas of moderate to high malaria transmission. In these settings, humans are continuously exposed to new malaria infections delivered by natural mosquito transmission that can be prevented by antibiotics. In the liver, a surplus of parasites presented to the immune system results in robust induction of memory immune responses that can recognize and destroy future malaria infections in the liver, when antibiotics are no longer taken.

Dr Steffen Borrman co-author on the paper says that 'this proof-of-principle study attempts to bridge a gap between basic malaria research and a rapid translation to a potential application in malaria-endemic countries. An important follow-up of this work is the validation of our experimental approach by clinical trials in humans. If successful, periodic administration of antibiotics, preferably in drug combinations, in high-risk population groups, particularly young, non-immune children, may provide an additional valuable tool for controlling and/or eliminating malaria in resource-poor settings.'

To contact Julius Hafalla of LSHTM, one of the paper's authors, please call Sally Hall, Media Manager, on 020 7927 2073 / 07790 992797 or email sally.hall@lshtm.ac.uk

Sally Hall | EurekAlert!
Further information:
http://www.lshtm.ac.uk

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>