Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Needle-free' intervention as natural vaccine against malaria

12.08.2010
A study published in the journal Science Translation Medicine proposes that preventative treatment with affordable and safe antibiotics in people living in areas with intense malaria transmission has the potential to act as a 'needle-free' natural vaccine against malaria and may likely provide an additional valuable tool for controlling and/or eliminating malaria in resource-poor settings.

The research, conducted by a multinational team of researchers from the London School of Tropical Medicine and Hygiene (LSHTM), Heidelberg University School of Medicine, the Max Planck Institute for Infection Biology, Germany, and the KEMRI-Wellcome Trust Research Programme, Kenya, found that infection with malaria parasites during administration of preventative antibiotics developed a vaccine-like immunity against re-infection.

Approximately half the world's population is at risk of malaria and about one million people (mainly children living in sub-Saharan Africa) die each year from malaria, a mosquito-borne parasitic disease. Malaria parasites are transmitted to people through the bite of an infected Anopheles mosquito. Only an estimated 10 to 100 parasites per mosquito bite invade the liver where they replicate. About a week after infection, tens of thousands of parasites are released into the bloodstream where they are responsible for malaria's recurring fevers and cause life-threatening complications.

In this study, the researchers showed that the antibiotics caused a cellular defect in malaria parasites during their passage into the liver of the infected host. This action did not prevent parasite replication in the liver but blocked the malaria parasite's fatal conversion to the disease causing blood stage. The very late arrest of parasites in the liver allowed the immune system to mount a robust defence against subsequent infections, akin to experimental whole organism vaccine strategies using attenuated parasites.

As already established, antibiotics, especially in combination with other anti-malarial drugs, are safe and affordable drugs against an acute malaria infection. The novel concept is to take advantage of the immunological benefit of antibiotic prophylaxis in areas of moderate to high malaria transmission. In these settings, humans are continuously exposed to new malaria infections delivered by natural mosquito transmission that can be prevented by antibiotics. In the liver, a surplus of parasites presented to the immune system results in robust induction of memory immune responses that can recognize and destroy future malaria infections in the liver, when antibiotics are no longer taken.

Dr Steffen Borrman co-author on the paper says that 'this proof-of-principle study attempts to bridge a gap between basic malaria research and a rapid translation to a potential application in malaria-endemic countries. An important follow-up of this work is the validation of our experimental approach by clinical trials in humans. If successful, periodic administration of antibiotics, preferably in drug combinations, in high-risk population groups, particularly young, non-immune children, may provide an additional valuable tool for controlling and/or eliminating malaria in resource-poor settings.'

To contact Julius Hafalla of LSHTM, one of the paper's authors, please call Sally Hall, Media Manager, on 020 7927 2073 / 07790 992797 or email sally.hall@lshtm.ac.uk

Sally Hall | EurekAlert!
Further information:
http://www.lshtm.ac.uk

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>