Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Ice that burns' may yield clean, sustainable bridge to global energy future

24.03.2009
In the future, natural gas derived from chunks of ice that workers collect from beneath the ocean floor and beneath the arctic permafrost may fuel cars, heat homes, and power factories.

Government researchers are reporting that these so-called "gas hydrates," a frozen form of natural gas that bursts into flames at the touch of a match, show increasing promise as an abundant, untapped source of clean, sustainable energy. The icy chunks could supplement traditional energy sources that are in short supply and which produce large amounts of carbon dioxide linked to global warming, the scientists say.

"These gas hydrates could serve as a bridge to our energy future until cleaner fuel sources, such as hydrogen and solar energy, are more fully realized," says study co-leader Tim Collett, Ph.D., a research geologist with the U.S. Geological Survey (USGS) in Denver, Colo. Gas hydrates, known as "ice that burns," hold special promise for helping to combat global warming by leaving a smaller carbon dioxide footprint than other fossil fuels, Collett and colleagues note.

They will present research on gas hydrates here today at the American Chemical Society's 237th National Meeting. It is among two dozen papers on the topic scheduled for a two-day symposium, "Gas Hydrates and Clathrates," March 23-24, held at the Hilton Salt Lake City, Grand Ballroom A. The symposium begins at 8 a.m. on Monday, March 23.

Last November, a team of USGS researchers that included Collett announced a giant step toward that bridge to the future. In a landmark study, the USGS scientists estimated that 85.4 trillion cubic feet of natural gas could potentially be extracted from gas hydrates in Alaska's North Slope region, enough to heat more than 100 million average homes for more than a decade.

"It's definitely a vast storehouse of energy," Collett says. "But it is still unknown how much of this volume can actually be produced on an industrial scale." That volume, he says, depends on the ability of scientists to extract useful methane, the main ingredient in natural gas, from gas hydrate formations in an efficient and cost-effective manner. Scientists worldwide are now doing research on gas hydrates in order to understand how this strange material forms and how it might be used to supplement coal, oil, and traditional natural gas.

Although scientists have known about gas hydrates for decades, they've only recently begun to try to use them as an alternative energy source. Gas hydrates, also known as "clathrates," form when methane gas from the decomposition of organic material comes into contact with water at low temperatures and high pressures. Those cold, high-pressure conditions exist deep below the oceans and underground on land in certain parts of the world, including the ocean floor and permafrost areas of the Arctic.

Today, researchers are finding tremendous stores of gas hydrates throughout the world, including United States, India, and Japan. In addition to Alaska, the United States has vast gas hydrate deposits in the Gulf of Mexico and off its eastern coast. Interest in and support of hydrate research is now growing worldwide. Japan and India currently have among the largest, most well-funded hydrate research programs in the world.

"Once we have learned better how to find the most promising gas hydrate deposits, we will need to know how to produce it in a safe and commercially-viable way," says study co-author Ray Boswell, Ph.D. He manages the National Methane Hydrate R&D Program of the U.S. Department of Energy's National Energy Technology Laboratory in Morgantown, W. Va. "Chemistry will be a big part of understanding just how the hydrates will respond to various production methods."

One of the more promising techniques for extracting methane from hydrates involves simply depressurizing the deposits, Boswell says. Another method involves exchanging the methane molecules in the "clathrate" structure with carbon dioxide. Workers can, in theory, collect the gas using the same drilling technology used for conventional oil and gas drilling.

Under the Methane Hydrate Research and Development Act of 2000, the U.S. government has already spent several million dollars, in collaboration with universities and private companies, to investigate gas hydrates as an alternative energy source. Scientists are particularly optimistic about the vast stores of gas hydrates located in Alaska and in the Gulf of Mexico. Research is also accelerating under the U.S. Department of Energy and USGS to better understand gas hydrate's role in the natural environment and in climate change.

"Gas hydrates are totally doable," Collett says. "But when and where we will see them depends on need, motivation, and our supply of other energy resources. In the next five to ten years, the research potential of gas hydrates will be more fully realized."

Other highlights in the symposium include:

Expert provides overview of gas hydrates for energy production, climate change — Scientists predict that natural gas hydrates will play a major role in both energy and climate change in the future. E. Dendy Sloan, Ph.D., of the Colorado School of Mines, will provide an overview of this rapidly evolving field. He is the author over 200 publications, including the third edition of "Clathrate Hydrates of Natural Gases," (2008), co-authored by Carolyn Koh. (FUEL 041, Monday, March 23, 8:05 a.m., at the Hilton, Grand Ballroom A, during the symposium "Gas Hydrates and Clathrates.")

Japan's promising national gas hydrate program – Japan has one of the world's largest gas hydrate research programs and is well on its way toward using these hydrates as an important fuel source. Masanori Kurihara, Ph.D., of Japan Oil Engineering Co., Ltd., will describe Japan's National Methane Hydrate Exploitation Program, including research on promising methane hydrate deposits in the Eastern Nankai Trough of offshore Japan. (FUEL 042, Monday, March 23, 8:45 a.m., at the Hilton, Grand Ballroom A, during the symposium, "Gas Hydrates and Clathrates.")

Overview of gas hydrate research in Canada — Canada has been involved in gas hydrates research since the 1970s and now plays a leading role in hydrate production technology. Scott R. Dallimore, of Geological Survey of Canada, will provide an overview of the country's contributions toward gas hydrate production. (FUEL 045, Monday, March 23, 11:05 a.m., at the Hilton, Grand Ballroom A, during the symposium, "Gas Hydrates and Clathrates.")

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>