Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Forest killer' plant study explores rapid environmental change factors

24.09.2012
Mikania micrantha, known as mile-a-minute weed or 'forest killer,' is an exotic, invasive species that spreads quickly, covering crops, smothering trees and rapidly altering the environment

It's called mile-a-minute weed or "forest killer." Mikania micrantha is an exotic, invasive species that spreads quickly, covering crops, smothering trees and rapidly altering the environment.

Researchers at Arizona State University are spearheading a four-year research project that will explore what factors cause people and the environment to be vulnerable to rapid environmental change, such as an invasion by Mikania. Study findings likely will serve as a harbinger of the future as humans increasingly experience abrupt, extreme conditions associated with climate change, said Sharon J. Hall, the study's co-principal investigator and Arizona State University School of Life Sciences associate professor in the College of Liberal Arts and Sciences.

"There are many communities that have to deal with and adapt to rapid change. Mikania is just one example. We're looking at how social and ecological forces in communities make them more resistant or vulnerable to rapid environmental change," Hall said. "Mikania is considered one of the world's worst invader weeds, and it is having a significant impact on agriculture in India and China. If there are crop species, it will grow over them. It grows extremely fast, up and over trees, as quickly as three inches per day."

The study, "Feedbacks Between Human Community Dynamics and Socioecological Vulnerability in a Biodiversity Hotspot," examines how the social and natural ecosystem surrounding Chitwan National Park of Nepal is being threatened by invasive plant species. It is funded by a $1,449,521 grant from the Dynamics of Coupled Natural and Human Systems program of the National Science Foundation.

Researchers will conduct the study in an area covering approximately 20 square miles in forests surrounding Chitwan National Park, a protected area that is home to many endangered species, including Bengal tiger and one-horned rhinoceros. The park borders populous communities and forests that the people use in their daily lives.

The study will also examine what people are doing to spread Mikania and how the plant affects people's lives. Collaborators on the study include: Abigail York, co-principal investigator and ASU School of Human Evolution and Social Change assistant professor; Li An, San Diego State University; Dirgha Ghimire, University of Michigan; Jennifer Glick, ASU School of Social and Family Dynamics professor; and Sean Murphy, CABI, an international non-profit organization focused on solving agricultural and environmental problems through scientific expertise.

"What sets our research apart from most previous work on invasive species and human populations is that we are taking an integrated approach to examining the environment, people, and society at many different levels: individuals, households, landscapes, community governance organizations, and so-called 'non-family organizations' like marketplaces/stores, schools and employers," said Scott Yabiku, the study's principal investigator and ASU School of Social and Family Dynamics associate professor in the College of Liberal Arts and Sciences.

Researchers are integrating a holistic, use-inspired approach into their study by observing and documenting the problem, using experimentation to tease apart driving forces, and implementing an intervention to reduce the spread of the species throughout the 21 community forests that border Chitwan National Park. Examining how people affect the forest's health and how the forest affects resident's livelihood will vary from an individual level to how forest management groups are addressing the problem.

"Not only are we thoroughly studying the social and ecological system surrounding the Chitwan National Park, we will also conduct experiments that test if an educational intervention with community forest groups can slow the spread of invasive species," Yabiku said. "At the end of the project, we'll implement this intervention in all remaining forest groups in the study area in the hopes that it has an impact on the well-being of the forests that these people rely on."

Mikania is a challenging adversary that can regenerate from dropping a small piece onto the soil. Possible interventions that may be implemented include carefully bagging the plant before removing it from the forest. Another practice that bears examination is use of fire in forest management, as this activity creates a nutrient rich environment that may encourage the spread of Mikania.

Contact:

Julie Newberg
Arizona State University
julie.newberg@asu.edu
(480) 727-3116

Julie Newberg | EurekAlert!
Further information:
http://www.asu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>