Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Couch potato pill' might stop heat stroke too

09.01.2012
We've all seen the story in the news before. Whether it's the death of a physically fit high school athlete at football training camp in August, or of an elderly woman gardening in the middle of the day in July, heat stroke is a serious, life-threatening condition for which there is no treatment beyond submersion in ice water or the application of ice packs to cool the body to a normal temperature.

But, in a new study published today in the journal Nature Medicine, scientists discovered what they believe is one of the first drugs to combat heat stroke. AICAR – an experimental therapy once dubbed the "couch potato pill" for its ability to mimic the effects of exercise in sedentary mice – protected animals genetically predisposed to the disorder and may hold promise for the treatment of people with enhanced susceptibility to heat-induced sudden death.

"There is a great need for the training staff of athletic teams, physicians in emergency rooms in places like Phoenix, and soldiers serving in the deserts of the Middle East to have a drug available to give to individuals during a heat stroke event," said Robert T. Dirksen, Ph.D., study author and professor of Pharmacology and Physiology at the University of Rochester Medical Center. "Our study takes an important first step towards developing a new drug therapy that may be part of the standard treatment regimen for heat stroke in the future."

The finding comes as heat stroke cases are on the rise. According to a recent study in the American Journal of Preventive Medicine, the number of heat-related injuries in the U.S. more than doubled from 1997 to 2006. In that 10-year period, an estimated 55,000 people were treated for the condition in emergency rooms across the country.

The research team, led by Dirksen's long-time collaborator Susan L. Hamilton, Ph.D., from Baylor College of Medicine, tested the drug in mice with a mutation in the RYR1 gene. The mutation is associated with malignant hyperthermia, a life-threatening inherited disorder of skeletal muscle in which commonly used general anesthetics trigger uncontrolled muscle contractions and dangerous increases in body temperature. Unexpectedly, further work demonstrated that these mice exhibit similar uncontrolled muscle contractions – a classic heat stroke response – during exposure to high temperatures or when exercising under warm conditions.

The team found that AICAR administration protected the mice from experiencing such contractions under heat stress. If not stopped, the contractions cause muscles to break apart and release their contents, including potassium and proteins, into the blood. High levels of potassium in the blood are extremely toxic and, if not treated quickly, can cause cardiac arrhythmias and death.

Unfortunately, the drug didn't deliver the same positive result for anesthetic-induced malignant hyperthermia.

AICAR made a big splash in 2008 when a study published in Cell, a prestigious scientific journal, found that the drug built muscle and increased endurance in completely inactive mice. As additional studies further established AICAR's ability to improve muscle function, the team grew curious to test how it might influence the whole-body muscle contractions characteristic of RYR1-associated heat stroke in mice.

Not only did they discover the unanticipated protective effect of the drug, but that it worked in a completely different way than they originally thought.

AICAR normally works by activating the body's metabolic "master switch," an enzyme called AMPK that, among other things, influences muscle activity. However, researchers found that the ability of the drug to protect the mice from heat stroke was unrelated to its effects on this master switch. Rather, it directly influenced RYR1.

RYR1, or the type 1 ryanodine receptor, is a protein that plays an essential role in muscle contraction. It is responsible for releasing positively charged calcium ions from storage compartments within cells, which then combine with muscle proteins to trigger contraction. In response to heat, mutations in RYR1 cause excessive amounts of calcium to leak from the storage compartment and trigger uncontrolled muscle contractions. The team found that AICAR reduces calcium leakage from RYR1, thus diminishing heat-induced contractions, muscle damage, and death.

In a separate but related article published in the journal Anesthesiology, Dirksen and colleagues reported cases of two children with RYR1 mutations who died following episodes triggered by either a viral fever or exposure to environmental heat stress. The team points out that while RYR1 mutations may only account for a small subset of heat stroke cases in the general population, they believe their finding that AICAR is protective against heat stroke is likely to apply more broadly.

"We think the fundamental process that occurs during heat stroke in individuals with RYR1 mutations is likely to be similar to what happens even in their absence. The difference may be that individuals with RYR1 mutations are more easily thrust into the process, whereas those without need to be pushed more – for example, by exposure to even greater temperatures or a longer time – in order to move beyond a critical threshold," noted Dirksen.

The team plans to study the efficacy of AICAR in other models of heat- and exercise-induced disorders.

Though no couch potato pill has come to fruition yet, AICAR is currently under investigation for the treatment of certain muscle diseases and metabolic disorders where exercise is known to be beneficial.

This research was supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases at the National Institutes of Health, the Department of Defense and the Muscular Dystrophy Association of America. In addition to Dirksen, Research Assistant Professor Viktor Yarotskyy, Ph.D., and graduate student Alina Ainbinder from the University of Rochester Medical Center participated in the research. Several scientists from Hamilton's team at Baylor College of Medicine and one from the Joslin Diabetes Center in Boston also contributed significantly to the work.

Emily Boynton | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>