Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Cannabis alters human DNA' -- new study

18.06.2009
Research at University of Leicester highlights cancer risk from cannabis smoke

A new study published by University of Leicester researchers has found "convincing evidence" that cannabis smoke damages DNA in ways that could potentially increase the risk of cancer development in humans.

Using a newly developed highly sensitive liquid chromatography-tandem mass spectrometry method, the University of Leicester scientists found clear indication that cannabis smoke damages DNA, under laboratory conditions.

They have now published the findings in the journal Chemical Research in Toxicology1.

The research was carried out by Rajinder Singh, Jatinderpal Sandhu, Balvinder Kaur, Tina Juren, William P. Steward, Dan Segerback and Peter B. Farmer from the Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine and Karolinska Institute, Sweden.

Raj Singh said: "Parts of the plant Cannabis sativa, also known as marijuana, ganja, and various street names, are commonly smoked as a recreational drug, although its use for such purposes is illegal in many countries.

"There have been many studies on the toxicity of tobacco smoke. It is known that tobacco smoke contains 4000 chemicals of which 60 are classed as carcinogens. Cannabis in contrast has not been so well studied. It is less combustible than tobacco and is often mixed with tobacco in use. Cannabis smoke contains 400 compounds including 60 cannabinoids. However, because of its lower combustibility it contains 50% more carcinogenic polycyclic aromatic hydrocarbons including naphthalene, benzanthracene, and benzopyrene, than tobacco smoke."

Writing in the journal Chemical Research in Toxicology, the scientists describe the development of a mass spectrometry method that provides a clear indication that cannabis smoke damages DNA, under laboratory conditions.

The authors added: "It is well known that toxic substances in tobacco smoke can damage DNA and increase the risk of lung and other cancers. Scientists were unsure though whether cannabis smoke would have the same effect. Our research has focused on the toxicity of acetaldehyde, which is present in both tobacco and cannabis."

The researchers add that the ability of cannabis smoke to damage DNA has significant human health implications especially as users tend to inhale more deeply than cigarette smokers, which increases respiratory burden. "The smoking of 3-4 cannabis cigarettes a day is associated with the same degree of damage to bronchial mucus membranes as 20 or more tobacco cigarettes a day," the team adds.

"These results provide evidence for the DNA damaging potential of cannabis smoke," the researchers conclude, "implying that the consumption of cannabis cigarettes may be detrimental to human health with the possibility to initiate cancer development."

The study was funded by the European Union Network of Excellence ECNIS, the Medical Research Council and Cancer Research UK.

1. Rajinder Singh, Jatinderpal Sandhu, Balvinder Kaur, Tina Juren, William P. Steward, Dan Segerback and Peter B. Farmer (2009) Evaluation of the DNA Damaging Potential of Cannabis Cigarette Smoke by the Determination of Acetaldehyde Derived N2-Ethyl-2Œ-deoxyguanosine Adducts. Chemical Research in Toxicology, 22, 1181-1188.

Note to newsdesk: For more information/interviews, please contact: 0116 223 1827 or 0116 223 1823

Rajinder Singh | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>