Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Cannabis alters human DNA' -- new study

18.06.2009
Research at University of Leicester highlights cancer risk from cannabis smoke

A new study published by University of Leicester researchers has found "convincing evidence" that cannabis smoke damages DNA in ways that could potentially increase the risk of cancer development in humans.

Using a newly developed highly sensitive liquid chromatography-tandem mass spectrometry method, the University of Leicester scientists found clear indication that cannabis smoke damages DNA, under laboratory conditions.

They have now published the findings in the journal Chemical Research in Toxicology1.

The research was carried out by Rajinder Singh, Jatinderpal Sandhu, Balvinder Kaur, Tina Juren, William P. Steward, Dan Segerback and Peter B. Farmer from the Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine and Karolinska Institute, Sweden.

Raj Singh said: "Parts of the plant Cannabis sativa, also known as marijuana, ganja, and various street names, are commonly smoked as a recreational drug, although its use for such purposes is illegal in many countries.

"There have been many studies on the toxicity of tobacco smoke. It is known that tobacco smoke contains 4000 chemicals of which 60 are classed as carcinogens. Cannabis in contrast has not been so well studied. It is less combustible than tobacco and is often mixed with tobacco in use. Cannabis smoke contains 400 compounds including 60 cannabinoids. However, because of its lower combustibility it contains 50% more carcinogenic polycyclic aromatic hydrocarbons including naphthalene, benzanthracene, and benzopyrene, than tobacco smoke."

Writing in the journal Chemical Research in Toxicology, the scientists describe the development of a mass spectrometry method that provides a clear indication that cannabis smoke damages DNA, under laboratory conditions.

The authors added: "It is well known that toxic substances in tobacco smoke can damage DNA and increase the risk of lung and other cancers. Scientists were unsure though whether cannabis smoke would have the same effect. Our research has focused on the toxicity of acetaldehyde, which is present in both tobacco and cannabis."

The researchers add that the ability of cannabis smoke to damage DNA has significant human health implications especially as users tend to inhale more deeply than cigarette smokers, which increases respiratory burden. "The smoking of 3-4 cannabis cigarettes a day is associated with the same degree of damage to bronchial mucus membranes as 20 or more tobacco cigarettes a day," the team adds.

"These results provide evidence for the DNA damaging potential of cannabis smoke," the researchers conclude, "implying that the consumption of cannabis cigarettes may be detrimental to human health with the possibility to initiate cancer development."

The study was funded by the European Union Network of Excellence ECNIS, the Medical Research Council and Cancer Research UK.

1. Rajinder Singh, Jatinderpal Sandhu, Balvinder Kaur, Tina Juren, William P. Steward, Dan Segerback and Peter B. Farmer (2009) Evaluation of the DNA Damaging Potential of Cannabis Cigarette Smoke by the Determination of Acetaldehyde Derived N2-Ethyl-2Œ-deoxyguanosine Adducts. Chemical Research in Toxicology, 22, 1181-1188.

Note to newsdesk: For more information/interviews, please contact: 0116 223 1827 or 0116 223 1823

Rajinder Singh | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>