Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Cannabis alters human DNA' -- new study

18.06.2009
Research at University of Leicester highlights cancer risk from cannabis smoke

A new study published by University of Leicester researchers has found "convincing evidence" that cannabis smoke damages DNA in ways that could potentially increase the risk of cancer development in humans.

Using a newly developed highly sensitive liquid chromatography-tandem mass spectrometry method, the University of Leicester scientists found clear indication that cannabis smoke damages DNA, under laboratory conditions.

They have now published the findings in the journal Chemical Research in Toxicology1.

The research was carried out by Rajinder Singh, Jatinderpal Sandhu, Balvinder Kaur, Tina Juren, William P. Steward, Dan Segerback and Peter B. Farmer from the Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine and Karolinska Institute, Sweden.

Raj Singh said: "Parts of the plant Cannabis sativa, also known as marijuana, ganja, and various street names, are commonly smoked as a recreational drug, although its use for such purposes is illegal in many countries.

"There have been many studies on the toxicity of tobacco smoke. It is known that tobacco smoke contains 4000 chemicals of which 60 are classed as carcinogens. Cannabis in contrast has not been so well studied. It is less combustible than tobacco and is often mixed with tobacco in use. Cannabis smoke contains 400 compounds including 60 cannabinoids. However, because of its lower combustibility it contains 50% more carcinogenic polycyclic aromatic hydrocarbons including naphthalene, benzanthracene, and benzopyrene, than tobacco smoke."

Writing in the journal Chemical Research in Toxicology, the scientists describe the development of a mass spectrometry method that provides a clear indication that cannabis smoke damages DNA, under laboratory conditions.

The authors added: "It is well known that toxic substances in tobacco smoke can damage DNA and increase the risk of lung and other cancers. Scientists were unsure though whether cannabis smoke would have the same effect. Our research has focused on the toxicity of acetaldehyde, which is present in both tobacco and cannabis."

The researchers add that the ability of cannabis smoke to damage DNA has significant human health implications especially as users tend to inhale more deeply than cigarette smokers, which increases respiratory burden. "The smoking of 3-4 cannabis cigarettes a day is associated with the same degree of damage to bronchial mucus membranes as 20 or more tobacco cigarettes a day," the team adds.

"These results provide evidence for the DNA damaging potential of cannabis smoke," the researchers conclude, "implying that the consumption of cannabis cigarettes may be detrimental to human health with the possibility to initiate cancer development."

The study was funded by the European Union Network of Excellence ECNIS, the Medical Research Council and Cancer Research UK.

1. Rajinder Singh, Jatinderpal Sandhu, Balvinder Kaur, Tina Juren, William P. Steward, Dan Segerback and Peter B. Farmer (2009) Evaluation of the DNA Damaging Potential of Cannabis Cigarette Smoke by the Determination of Acetaldehyde Derived N2-Ethyl-2Œ-deoxyguanosine Adducts. Chemical Research in Toxicology, 22, 1181-1188.

Note to newsdesk: For more information/interviews, please contact: 0116 223 1827 or 0116 223 1823

Rajinder Singh | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>