Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Brain training' may boost working memory, but not intelligence

08.10.2013
Brain training games, apps, and websites are popular and it's not hard to see why — who wouldn't want to give their mental abilities a boost?

New research suggests that brain training programs might strengthen your ability to hold information in mind, but they won't bring any benefits to the kind of intelligence that helps you reason and solve problems.

The findings are published in Psychological Science, a journal of the Association for Psychological Science.

"It is hard to spend any time on the web and not see an ad for a website that promises to train your brain, fix your attention, and increase your IQ," says psychological scientist and lead researcher Randall Engle of Georgia Institute of Technology. "These claims are particularly attractive to parents of children who are struggling in school."

According to Engle, the claims are based on evidence that shows a strong correlation between working memory capacity (WMC) and general fluid intelligence. Working memory capacity refers to our ability to keep information either in mind or quickly retrievable, particularly in the presence of distraction. General fluid intelligence is the ability to infer relationships, do complex reasoning, and solve novel problems.

The correlation between WMC and fluid intelligence has led some to surmise that increasing WMC should lead to an increase in both fluid intelligence, but "this assumes that the two constructs are the same thing, or that WMC is the basis for fluid intelligence," Engle notes.

To better understand the relationship between these two aspects of cognition, Engle and colleagues had 55 undergraduate students complete 20 days of training on certain cognitive tasks. The students were paid extra for improving their performance each day to ensure that they were engaged in the training. Students in the two experimental conditions trained on either complex span tasks, which have been consistently shown to be good measures of WMC, or simple span tasks. With the simple span tasks, the students were asked to recall items in the order they were presented; for complex span tasks, the students had to remember items while performing another task in between item presentations. A control group trained on a visual search task that, like the other tasks, became progressively harder each day.

The researchers administered a battery of tests before and after training to gauge improvement and transfer of learning, including a variety of WMC measures and three measures of fluid intelligence.

The results were clear: Only students who trained on complex span tasks showed transfer to other WMC tasks. None of the groups showed any training benefit on measures of fluid intelligence.

"For over 100 years, psychologists have argued that general memory ability cannot be improved, that there is little or no generalization of 'trained' tasks to 'untrained' tasks," says Tyler Harrison, graduate student and lead author of the paper. "So we were surprised to see evidence that new and untrained measures of working memory capacity may be improved with training on complex span tasks."

The results suggest that the students improved in their ability to update and maintain information on multiple tasks as they switched between them, which could have important implications for real-world multitasking:

"This work affects nearly everyone living in the complex modern world," says Harrison, "but it particularly affects individuals that find themselves trying to do multiple tasks or rapidly switching between complex tasks, such as driving and talking on a cell phone, alternating between conversations with two different people, or cooking dinner and dealing with a crying child."

Despite the potential boost for multitasking, the benefits of training didn't transfer to fluid intelligence. Engle points out that just because WMC and fluid intelligence are highly correlated doesn't mean that they are the same:

"Height and weight in human beings are also strongly correlated but few reasonable people would assume that height and weight are the same variable," explains Engle. "If they were, gaining weight would make you taller and losing weight would make you shorter — those of us who gain and lose weight periodically can attest to the fact that that is not true."

The researchers plan to continue this research to better understand how training specific aspects of cognition can lead to positive transfer to other tasks, both in the lab and in the real world.

For more information about this study, please contact: Randall W. Engle at randall.engle@gatech.edu.

In addition to Engle, co-authors include Tyler L. Harrison and Kenny L. Hicks of Georgia Institute of Technology, Zach Shipstead of Arizona State University, David Z. Hambrick of Michigan State University, and Thomas S. Redick of Purdue University.

This research was supported by the Office of Naval Research Grant N000140910129.

The article abstract can be found online: http://pss.sagepub.com/content/early/2013/10/03/0956797613492984.abstract

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "'Brain Training' May Boost Working Memory, But Not Intelligence" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org

Anna Mikulak | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>