Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Brain training' may boost working memory, but not intelligence

08.10.2013
Brain training games, apps, and websites are popular and it's not hard to see why — who wouldn't want to give their mental abilities a boost?

New research suggests that brain training programs might strengthen your ability to hold information in mind, but they won't bring any benefits to the kind of intelligence that helps you reason and solve problems.

The findings are published in Psychological Science, a journal of the Association for Psychological Science.

"It is hard to spend any time on the web and not see an ad for a website that promises to train your brain, fix your attention, and increase your IQ," says psychological scientist and lead researcher Randall Engle of Georgia Institute of Technology. "These claims are particularly attractive to parents of children who are struggling in school."

According to Engle, the claims are based on evidence that shows a strong correlation between working memory capacity (WMC) and general fluid intelligence. Working memory capacity refers to our ability to keep information either in mind or quickly retrievable, particularly in the presence of distraction. General fluid intelligence is the ability to infer relationships, do complex reasoning, and solve novel problems.

The correlation between WMC and fluid intelligence has led some to surmise that increasing WMC should lead to an increase in both fluid intelligence, but "this assumes that the two constructs are the same thing, or that WMC is the basis for fluid intelligence," Engle notes.

To better understand the relationship between these two aspects of cognition, Engle and colleagues had 55 undergraduate students complete 20 days of training on certain cognitive tasks. The students were paid extra for improving their performance each day to ensure that they were engaged in the training. Students in the two experimental conditions trained on either complex span tasks, which have been consistently shown to be good measures of WMC, or simple span tasks. With the simple span tasks, the students were asked to recall items in the order they were presented; for complex span tasks, the students had to remember items while performing another task in between item presentations. A control group trained on a visual search task that, like the other tasks, became progressively harder each day.

The researchers administered a battery of tests before and after training to gauge improvement and transfer of learning, including a variety of WMC measures and three measures of fluid intelligence.

The results were clear: Only students who trained on complex span tasks showed transfer to other WMC tasks. None of the groups showed any training benefit on measures of fluid intelligence.

"For over 100 years, psychologists have argued that general memory ability cannot be improved, that there is little or no generalization of 'trained' tasks to 'untrained' tasks," says Tyler Harrison, graduate student and lead author of the paper. "So we were surprised to see evidence that new and untrained measures of working memory capacity may be improved with training on complex span tasks."

The results suggest that the students improved in their ability to update and maintain information on multiple tasks as they switched between them, which could have important implications for real-world multitasking:

"This work affects nearly everyone living in the complex modern world," says Harrison, "but it particularly affects individuals that find themselves trying to do multiple tasks or rapidly switching between complex tasks, such as driving and talking on a cell phone, alternating between conversations with two different people, or cooking dinner and dealing with a crying child."

Despite the potential boost for multitasking, the benefits of training didn't transfer to fluid intelligence. Engle points out that just because WMC and fluid intelligence are highly correlated doesn't mean that they are the same:

"Height and weight in human beings are also strongly correlated but few reasonable people would assume that height and weight are the same variable," explains Engle. "If they were, gaining weight would make you taller and losing weight would make you shorter — those of us who gain and lose weight periodically can attest to the fact that that is not true."

The researchers plan to continue this research to better understand how training specific aspects of cognition can lead to positive transfer to other tasks, both in the lab and in the real world.

For more information about this study, please contact: Randall W. Engle at randall.engle@gatech.edu.

In addition to Engle, co-authors include Tyler L. Harrison and Kenny L. Hicks of Georgia Institute of Technology, Zach Shipstead of Arizona State University, David Z. Hambrick of Michigan State University, and Thomas S. Redick of Purdue University.

This research was supported by the Office of Naval Research Grant N000140910129.

The article abstract can be found online: http://pss.sagepub.com/content/early/2013/10/03/0956797613492984.abstract

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "'Brain Training' May Boost Working Memory, But Not Intelligence" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org

Anna Mikulak | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>