Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Brain training' may boost working memory, but not intelligence

08.10.2013
Brain training games, apps, and websites are popular and it's not hard to see why — who wouldn't want to give their mental abilities a boost?

New research suggests that brain training programs might strengthen your ability to hold information in mind, but they won't bring any benefits to the kind of intelligence that helps you reason and solve problems.

The findings are published in Psychological Science, a journal of the Association for Psychological Science.

"It is hard to spend any time on the web and not see an ad for a website that promises to train your brain, fix your attention, and increase your IQ," says psychological scientist and lead researcher Randall Engle of Georgia Institute of Technology. "These claims are particularly attractive to parents of children who are struggling in school."

According to Engle, the claims are based on evidence that shows a strong correlation between working memory capacity (WMC) and general fluid intelligence. Working memory capacity refers to our ability to keep information either in mind or quickly retrievable, particularly in the presence of distraction. General fluid intelligence is the ability to infer relationships, do complex reasoning, and solve novel problems.

The correlation between WMC and fluid intelligence has led some to surmise that increasing WMC should lead to an increase in both fluid intelligence, but "this assumes that the two constructs are the same thing, or that WMC is the basis for fluid intelligence," Engle notes.

To better understand the relationship between these two aspects of cognition, Engle and colleagues had 55 undergraduate students complete 20 days of training on certain cognitive tasks. The students were paid extra for improving their performance each day to ensure that they were engaged in the training. Students in the two experimental conditions trained on either complex span tasks, which have been consistently shown to be good measures of WMC, or simple span tasks. With the simple span tasks, the students were asked to recall items in the order they were presented; for complex span tasks, the students had to remember items while performing another task in between item presentations. A control group trained on a visual search task that, like the other tasks, became progressively harder each day.

The researchers administered a battery of tests before and after training to gauge improvement and transfer of learning, including a variety of WMC measures and three measures of fluid intelligence.

The results were clear: Only students who trained on complex span tasks showed transfer to other WMC tasks. None of the groups showed any training benefit on measures of fluid intelligence.

"For over 100 years, psychologists have argued that general memory ability cannot be improved, that there is little or no generalization of 'trained' tasks to 'untrained' tasks," says Tyler Harrison, graduate student and lead author of the paper. "So we were surprised to see evidence that new and untrained measures of working memory capacity may be improved with training on complex span tasks."

The results suggest that the students improved in their ability to update and maintain information on multiple tasks as they switched between them, which could have important implications for real-world multitasking:

"This work affects nearly everyone living in the complex modern world," says Harrison, "but it particularly affects individuals that find themselves trying to do multiple tasks or rapidly switching between complex tasks, such as driving and talking on a cell phone, alternating between conversations with two different people, or cooking dinner and dealing with a crying child."

Despite the potential boost for multitasking, the benefits of training didn't transfer to fluid intelligence. Engle points out that just because WMC and fluid intelligence are highly correlated doesn't mean that they are the same:

"Height and weight in human beings are also strongly correlated but few reasonable people would assume that height and weight are the same variable," explains Engle. "If they were, gaining weight would make you taller and losing weight would make you shorter — those of us who gain and lose weight periodically can attest to the fact that that is not true."

The researchers plan to continue this research to better understand how training specific aspects of cognition can lead to positive transfer to other tasks, both in the lab and in the real world.

For more information about this study, please contact: Randall W. Engle at randall.engle@gatech.edu.

In addition to Engle, co-authors include Tyler L. Harrison and Kenny L. Hicks of Georgia Institute of Technology, Zach Shipstead of Arizona State University, David Z. Hambrick of Michigan State University, and Thomas S. Redick of Purdue University.

This research was supported by the Office of Naval Research Grant N000140910129.

The article abstract can be found online: http://pss.sagepub.com/content/early/2013/10/03/0956797613492984.abstract

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "'Brain Training' May Boost Working Memory, But Not Intelligence" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org

Anna Mikulak | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>