Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DuPont Adds Renewable Material to Handheld Device Polymer Portfolio

25.06.2013
DuPont Performance Polymers at K 2013:
“Welcome to the Global Collaboratory™”
Düsseldorf, Germany, Oct 16-23 - Hall 6/Stand C43
Online at k2013.plastics.dupont.com
New advanced polymers have enabled handheld device designers greater freedom so they can continue to refresh the look, feel and upgrade performance, while delivering a better environmental footprint, according to Handheld Segment Leader Mark Hazel of DuPont Performance Polymers.

Hazel identifies the polymer material as DuPont™ Zytel® RS HTN high performance polyamide – a renewably sourced polymer that has seen a four times growth rate since its introduction just four years ago. Stiffness, strength, low warpage and low moisture pickup combine to help ensure thinner walls for sleek, light designs that improve performance. Derived from sebacic acid, the material affords environmental benefits by replacing petroleum sources with non-food renewable sources.

In handheld electronics applications one of the major characteristics required in a material is its Radio Frequency Interference (RFI) compatibility. If the material picks up moisture, it changes its RFI characteristics and detunes itself. This means that the battery has to supply more power to the antenna and the battery life suffers as a result. At DuPont we have developed enhanced materials, which are less prone to moisture absorption.

Handheld devices dominate the consumer electronics market and make up a significant share of the commercial market too. Within this subset, which also includes laptops, ultrabooks, game controllers and hand held meters, mobile phones account for a staggering volume of sales. Multiple reports – although not agreeing on the total figure – put shipments in the first quarter of 2013 at over 370 million handsets.

Mobile phones, along with other handheld devices, have undergone significant design changes over the last decade, with both functional and aesthetic features appearing and then disappearing as trends and technology change. Hazel explains the design evolution of the mobile phone, which has also been mirrored in the development of many other devices including gaming hardware, tablets and laptops: "In the early days many phones used to comprise a stiff plastic chassis with decorative and sometimes removable front and back covers. This chassis gave the phone its strength and provided the mounting frame for all of the internal electronics. However, as they evolved, with larger screens and more powerful electronics, this chassis concept became less attractive functionally, as users wanted the screen size but without the body bulk. Many OEMs therefore steadily reverted to a design where the screen and rear cover act as significant parts of the structure, freeing up much more internal space for the enhanced electronics."

This increase in electronic content was part of the driving force behind the Waste Electronic and Electrical Equipment (WEEE) directive, when it was recognised that level of use of certain materials was unsustainable and that manufacturers had to take some responsibility for the disposal and recycling of devices at the end of their useful life. But many manufacturers also realised that they could tackle other significant sustainability targets by deploying renewably sourced materials, such as Zytel® RS HTN, for both structural and aesthetic elements of the phone's casing.

DuPont™ Zytel® HTN is a high-performance polyamide resin that can be used to make thinner, lighter and more durable handheld device housings while making them longer-lasting and easier to produce. From a processing perspective, Zytel® HTN grades can also save energy, cost and time thanks to its excellent flow and dimensional stability. A halogen-free, flame-retardant grade is also available for compliance with recycling programs for discarded electronic products. Specific grades are also available that can withstand high-temperature circuit assembly methods, including those using lead-free solder.

Aesthetically, both grades (Zytel® HTN and Zytel® RS HTN) deliver very good surface quality and appearance and are easily coloured.

All the materials that we have developed for the hand held market are highly stiff and protect the parts from excessive deflection if dropped. Hazel explains: "Screens and circuit boards cannot twist or deform too much so stiffness is vital. We use 50% glass filler to achieve the best stiffness and toughness (only possible in Nylons such as Zytel® HTN), but we also have to consider RFI compatibility, colourability and surface finish – it is a fine balancing act." DuPont has also developed a repetitive-impact test, which, rather than testing impact test bars to discover the energy to shear, actually tests and measures the number of times a sample can be hit until it breaks This test is much more representative of the use a handheld device will see and demonstrates that Zytel® HTN and Zytel® RS HTN offer class-leading performance.

DuPont Performance Polymers is committed to working with customers throughout the world to develop new products, components and systems that help reduce dependence on fossil fuels and protect people and the environment. With more than 40 manufacturing, development and research centers throughout the world, DuPont Performance Polymers uses the industry’s broadest portfolio of plastics, elastomers, renewably sourced polymers, filaments and high-performance parts and shapes to deliver cost-effective solutions to customers in aerospace, automotive, consumer, electrical, electronic, industrial, sporting goods and other diversified industries.

DuPont (NYSE: DD) has been bringing world-class science and engineering to the global marketplace in the form of innovative products, materials, and services since 1802. The company believes that by collaborating with customers, governments, NGOs, and thought leaders we can help find solutions to such global challenges as providing enough healthy food for people everywhere, decreasing dependence on fossil fuels, and protecting life and the environment. For additional information about DuPont and its commitment to inclusive innovation, please visit www.dupont.com.

The DuPont Oval Logo, DuPont™, The miracles of science™ and all product names denoted with ® are trademarks or registered trademarks of E.I. du Pont de Nemours and Company or its affiliates.
PP-EU- 2013-05

DuPont press contact
Rémi Daneyrole
Tel.: +41 (0)22 717 54 19
Fax: +41 (0)22 580 22 45
remi.daneyrole@dupont.com

Rémi Daneyrole | DuPont
Further information:
http://www.dupont.com

More articles from Trade Fair News:

nachricht Complex hardmetal tools out of the 3D printer
21.09.2016 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Launch of New Industry Working Group for Process Control in Laser Material Processing
20.09.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

The Flexible Grid Involves its Users

27.09.2016 | Information Technology

Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints

27.09.2016 | Machine Engineering

First quantum photonic circuit with electrically driven light source

27.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>