Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New CAM system for efficient laser material deposition

The Fraunhofer Institute for Laser Technology ILT has developed an offline programming system for laser material deposition. The LaCam3D program enables process developers and end-users to generate tool paths quickly, even for complex LMD tasks that have non-standard welding strategies.
The generated paths are translated into machine code, and can be tested for possible collisions via a machine simulation. LACam3D will be presented for the first time at the EuroMold from November 27.-30., 2012 in Frankfurt at the Fraunhofer joint booth, hall 11- C66a.

Unique characteristics of laser material deposition (LMD) in comparison with conventional processes are e.g. the minimalized heat input and low levels of distortion. Combined with the high degree of process accuracy and the potential for automation it offers, this results in LMD becoming increasingly important for industrial applications such as an additive, repair or manufacturing process.

Path planning

The additive manufacture of parts using LMD involves the CAD model of the part being split into horizontal, cross-sectional layers that correspond to the direction in which the part is to be built up. These are then filled out using equidistant tool paths or parallel paths, being projected onto the welding surface, according to the strategy that has been selected. For the repair of parts that have suffered operational wear and tear, the actual geometry is first measured using a laser line scanner to generate a point cloud, from which a surface model is made using reverse engineering. The volume of the defect is ascertained by determining the best fit between the actual geometry and the CAD model of the component, and is then built up using LMD.


LaCam3D provides functionalities for LMD strategies that enable the LMD sequence and welding direction of individual paths to be modified. Parameters like laser power and velocity can be specified and tuned for each individual tool path. When designating tool paths to fill the various layers, the user can choose between equidistant paths and parallel paths that are projected onto the surface of the layer. The paths are automatically cropped to keep within the boundary marking the edge of the defect area. The paths are planned in such a way as to allow enough oversize for the finishing process that follows, in which excess material is machined. There is a specifically designed module available to help plan paths for turbine parts made using additive manufacturing. Due to its modular structure, the program can be complemented as necessary for various applications by further modules.

Collision testing

LaCam3D is equipped with a simulation tool that can check in advance whether the planned LMD process will cause the laser processing head to collide with the part. The machine code is generated using an integrated postprocessor that supports a full range of different systems.

As a CAM module for LMD, LaCam3D’s functionalities are designed in such a way that the process developer and end-user can generate LMD paths immediately, even for complex LMD jobs with non-standard LMD strategies. The modular structure of the program allows additional algorithms of particular LMD strategies to be integrated. Currently, a prototype of LaCam3D is used at Fraunhofer ILT in Aachen for about 2 years now, and that they are continuing to develop.


Dr. Norbert Pirch
Competence Area Additive Manufacturing and Functional Layers
Phone +49 241 8906-636

Dipl.-Phys. John Flemmer
Polishing Group
Phone +49 241 8906-137
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:

More articles from Trade Fair News:

nachricht Creating living spaces for people: The »Fraunhofer CityLaboratory« at BAU 2017
14.10.2016 | Fraunhofer-Gesellschaft

nachricht Reducing Weight through Laser-assisted Material Processing in Automobile Construction
13.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>