Silica-based Photopigments – Silica-based gel with entrapped (photo-)sensitive material

Entrapping sensitive material, e.g. immobilization of biomolecules or immobilization of other light-, pH- and/or temperature sensitive material is a demanding task in the art. That is, immobilization of biomolecules within polymer matrices has gained considerable importance in various fields of biotechnical processes.

For example photosynthetically active components which can absorb light and transfer energy, may be immobilized (entrapped) within suitable immobilization compounds, like polymer matrices for biotechnical processes. However, photosynthetically active components are extremely unstable and need to be stabilised outside of the cell, in order to use these highly effective components e.g. in third generation photo¬voltaics and artificial photosynthesis, respectively. The immobilized sensitive material includes active components, like the mentioned photosynthetically active components, but also optically and electrochemically active material. Beside encapsulation of whole cells, cell compartments or cell organelles as well as biological macromolecules including proteins, enzymes or other sensitive materials have been entrapped or encapsulated. In addition, systems have been described wherein the sensitive materials have been encapsulated in biopolymers first and said encapsulated sensitive materials are coated with e.g. silica allowing to associate soft biocompatible components, like alginate, with a tough thermostable non-swelling component like silica. The present invention describes new transparent silica-based gel and “glass” with entrapped sensitive material which is in particular light-, pH- and/or temperature- sensitive and furthermore a method of its preparation.

Further Information: PDF

PROvendis GmbH
Phone: +49 (0)208/94105 10

Contact
Dipl.-Ing. Alfred Schillert

Media Contact

info@technologieallianz.de TechnologieAllianz e.V.

All latest news from the category: Technology Offerings

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors