Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global aluminium waste headache solved

31.05.2002


An Australian research team has solved one of the world’s big industrial waste headaches - what to do with spent pot lining (SPL) from aluminium smelters.


In a major advance for sustainable mineral production, the "Alcoa Portland SPL Process" developed jointly by Portland Aluminium, Alcoa, Ausmelt and CSIRO renders the hazardous waste harmless and at the same time produces two commercial by-products.

Aluminium smelters worldwide produce about half a million tones a year of the toxic byproduct which, in many cases, simply has to be stored on site because local regulations prevent its disposal in landfill.

Now the Australian breakthrough has turned what was an intractable problem into economically useful products.



Aluminium fluoride produced by the process will directly replace a portion of the expensive imported aluminium fluoride used in the smelting process - significantly reducing purchase costs for this material.

Another product, "synthetic sand", has received Environment Protection Authority approval for unrestricted use and is expected to be used road-making and concrete production.

SPL project manager, Mr Ken Mansfield, says the company is delighted with the outcome.

"Treating SPL is a costly process, but achieving such an environmental breakthrough, where the by-products partially offset the processing costs, is an outstanding result."

Mr Mansfield said Portland Aluminium had 75,000 tonnes of SPL stored safely in secure containers and specially ventilated buildings. "But we couldn’t go on storing it for ever, so in 1989 we started seeking suitable treatment options. That was when we approached CSIRO, to comb the world for a process that would meet our environmental, technical and economic goals".

"When it became clear there wasn’t anything suitable worldwide, we began our own joint research, which led in 1992 to our trialling the Ausmelt technology."

Ausmelt Limited was established in the early 1980s by a former CSIRO researcher Dr John Floyd to commercialise his submerged-lance smelting technology - SIROSMELT.

SIROSMELT is a fast and efficient method of processing nonferrous metals based on a submerged combustion process. Fuel and gases are injected through a lance, the tip of which is submerged into the molten material in the furnace. The fuel combusts at the tip, heating and melting the incoming feed materials, and the injected gases cause vigorous agitation and rapid reactions.

Globally there are now 30 smelting plants using the core SIROSMELT technology which are used primarily for copper, zinc, lead and tin smelting which process more than 3 million tonnes per year of metallic concentrates.

In the processing of spent pot lining, typically operating at around 1250 degrees Celsius, the submerged lance technology has proved ideal for releasing the fluorine contained in the spent pot lining for conversion to other products. The process also destroys any cyanide that may be present.

The Portland Aluminium SPL team had to overcome many technical challenges, including finding a way to produce aluminium fluoride from the gases liberated by the process. Later, when the pilot reprocessing plant began operating, problems had to be solved in handling the gases and by-products.

The success of the process has attracted world attention and is being considered by other aluminium smelting organisations for the effective disposal of SPL.

Rosie Schmedding | EurekAlert
Further information:
http://www.ausimm.com.au/green2002/html/program.html

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>