Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Makes NASA’s Hi-C Flight a Success

28.01.2013
Work done in part by The University of Alabama has enabled a group of solar scientists to see into the sun’s corona in unprecedented detail.

Scientists and engineers from the Smithsonian Astrophysical Observatory (SAO), Marshall Space Flight Center and UAHuntsville teamed to align mirrors on the High Resolution Coronal Imager, or Hi-C.

Following that work, the imager captured the highest-resolution images ever taken of the million-degree solar corona, using a resolution five times greater than previous imagers. Hotter than the solar surface, the corona is where solar flares occur and release energy that drives solar storms that can impact Earth.

The imager’s high-quality optics were aligned with extreme accuracy. Mounting of the mirrors in the telescope was done using a new method that significantly reduced the impact of the process on the shape of the mirrors.

Weighing 464 pounds, the 6-foot-long Hi-C telescope took 165 images during a brief 620-second sounding rocket flight July 11. The telescope focused on a large active region on the sun. Some images reveal the dynamic structure of the solar atmosphere in fine detail. When combined with the full sun images from NASA’s Solar Dynamics Observatory (SDO), they provide a new picture of the solar corona.

The mirror alignment work involved maintaining optic spacing to within a few ten-thousandths of an inch. This innovative approach to aligning and installing the mirrors then had to be maintained so the instrument could survive the harsh vibration and thermal conditions during launch and flight of the rocket.

Hi-C's mirrors are approximately 9.5 inches across, roughly the same size as the SDO instrument’s mirrors. However, due to a set of innovations on Hi-C’s optics array, the nimble telescope was able to peer deeper into the sun’s corona in the extreme ultraviolet wavelength.

“These mirrors were to be the finest pieces of glass ever fabricated for solar astrophysics,” said Marshall heliophysicist Dr. Jonathan Cirtain, principal investigator on the Hi-C mission. “We had never attempted such a program before and had to develop new techniques for grinding the optics and polishing the surfaces, not to mention figuring out how to mount them without diminishing the performance. The final mirror surface is so smooth that it only deviates from being perfectly smooth by a few angstroms over the 24 cm optic.”

Using these quality optics, images were acquired at a rate of approximately one every five seconds and provided proof of a long-standing theory to explain solar coronal dynamics.

The optical design was provided by scientists and engineers from Marshall’s Science and Technology Office as well as SAO personnel. “Dr. Cirtain asked us to develop the mirrors initially to see how well we could make them,” said John Calhoun, Lead for Optics at Marshall. “The initial specifications were only a goal; however, we made such excellent progress on them that Dr. Cirtain was able to get the funding for his flight demonstration. Credit belongs to the superb work performed by our senior opticians, although their initial response to the very challenging fabrication was to refer to the optics as the ‘oh, my god’ mirrors.”

Scientists at Lededev Physical Institute in Moscow, Russia developed the filters for the instrument front aperture plate. These whisper-thin filters reject the unwanted wavelengths of light and only transmit the extreme ultraviolet spectrum.

Scientists have worked for the better part of a decade designing and building test facilities, followed by development, fabrication and testing of the optics.

"This flight represents the culmination of thirty-years of effort to develop these exceptionally high quality optics," said Co-investigator Dr. Leon Golub of SAO.

Marshall scientists and engineers also partnered with engineers from the University of Central Lancashire and Apogee Imaging Systems in Richmond, CA to develop a large format camera detector (16 megapixel) with a high speed image readout. The combination of the optics, the telescope and the camera system combined to deliver the highest cadence and highest resolution image set yet collected for the solar million degree atmosphere.

“As for the findings from Hi-C, the most important implication to me is the realization that at 150 km spatial resolution and an image cadence of 5 seconds, solar astrophysics can make multiple major advances in the science of how stars work and evolve,” said Cirtain. “That, I find, is breathtaking, especially for a sounding rocket to discover.”

Partners associated with the development of the Hi-C telescope also include Lockheed Martin's Solar Astrophysical Laboratory in Palo Alto, Calif.; the University of Central Lancashire in Lancashire, England; the Lebedev Physical Institute of the Russian Academy of Sciences in Moscow; and the Southwest Research Institute in Boulder, Colo.

The research is being published in the journal Nature in a paper co-authored by Cirtain, Golub, A. Winebarger (Marshall), B. De Pontieu (Lockheed Martin), K. Kobayashi (The University of Alabama in Huntsville), R. Moore (Marshall), R. Walsh (University of Central Lancashire), K. Korreck, M. Weber and P. McCauley (CfA), A. Title (Lockheed Martin), S. Kuzin (Lebedev Physical Institute), and C. DeForest (Southwest Research Institute).

Jim Seele | Newswise
Further information:
http://www.uah.edu

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>