Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers build world’s smallest mobile robot

15.09.2005


In a world where "supersize" has entered the lexicon, there are some things getting smaller, like cell phones and laptops. Dartmouth researchers have contributed to the miniaturizing trend by creating the world’s smallest untethered, controllable robot. Their extremely tiny machine is about as wide as a strand of human hair, and half the length of the period at the end of this sentence. About 200 of these could march in a line across the top of a plain M&M. View images of the microrobot: www.dartmouth.edu/~news/releases/2005/09/14a.html



The researchers, led by Bruce Donald, the Joan P. and Edward J. Foley Jr. 1933 Professor of Computer Science at Dartmouth, report their creation in a paper that will be presented at the 12th International Symposium of Robotics Research in October in San Francisco, which is sponsored by the International Federation of Robotics Research. A longer, more detailed paper about this microrobot will also appear in a forthcoming issue of the Journal of Microelectromechanical Systems, a publication of the IEEE, the Institute of Electrical and Electronics Engineers.

"It’s tens of times smaller in length, and thousands of times smaller in mass than previous untethered microrobots that are controllable," says Donald. "When we say ’controllable,’ it means it’s like a car; you can steer it anywhere on a flat surface, and drive it wherever you want to go. It doesn’t drive on wheels, but crawls like a silicon inchworm, making tens of thousands of 10-nanometer steps every second. It turns by putting a silicon ’foot’ out and pivoting like a motorcyclist skidding around a tight turn."


The future applications for micro-electromechanical systems, or MEMS, include ensuring information security, such as assisting with network authentication and authorization; inspecting and making repairs to an integrated circuit; exploring hazardous environments, perhaps after a hazardous chemical explosion; or involving biotechnology, say to manipulate cells or tissues.

Donald worked with Christopher Levey, Assistant Professor of Engineering and the Director of the Microengineering Laboratory at Dartmouth’s Thayer School of Engineering, Dartmouth Ph.D. students Craig McGray and Igor Paprotny, and Daniela Rus, Associate Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology.

Their paper describes a machine that measures 60 micrometers by 250 micrometers (one micrometer is one thousandth of a millimeter). It integrates power delivery, locomotion, communication, and a controllable steering system - the combination of which has never been achieved before in a machine this small. Donald explains that this discovery ushers in a new generation of even tinier microrobots.

McGray, who earned a Ph.D. in Computer Science working on this project in Donald’s lab, adds, "Machines this small tend to stick to everything they touch, the way the sand sticks to your feet after a day at the beach. So we built these microrobots without any wheels or hinged joints, which must slide smoothly on their bearings. Instead, these robots move by bending their bodies like caterpillars. At very small scales, this machine is surprisingly fast." McGray is currently a researcher at the National Institute of Standards and Technology in Gaithersburg, Md.

The prototype is steerable and untethered, meaning that it can move freely on a surface without the wires or rails that constrained the motion of previously developed microrobots. Donald explains that this is the smallest robot that transduces force, is untethered, and is engaged in its own locomotion. The robot contains two independent microactuators, one for forward motion and one for turning. It’s not pre-programmed to move; it is teleoperated, powered by the grid of electrodes it walks on. The charge in the electrodes not only provides power, it also supplies the robot’s instructions that allow it to move freely over the electrodes, unattached to them.

The work was funded in part by the Department of Homeland Security, Office of Domestic Preparedness through Dartmouth’s Institute for Security Technology Studies (ISTS).

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>