Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Listen, two black holes are clashing!’

26.11.2004


MiniGRAIL: first spherical gravitational wave antenna in the world

Since last week, Professor Giorgio Frossati of Leiden University’s Institute of Physics can ‘listen’ to gravitational waves. That is, if such a wave happens to come along. Gravitational waves originate from violent clashes between black holes in the universe and from instabilities in neutron stars.

MiniGRAIL is the name of the first spherical gravitational wave antenna in the world. The ball was made at the Leiden Institute of Physics (LION) of Leiden University. It is the product of years of close cooperation between Frossati’s research group and the technicians of the fine-mechanic and electronic workshop in the Institute. “A result to be proud of”, says Professor Peter Kes, LION’s scientific director.



The MiniGRAIL detector is made of copper with a pinch of aluminium (6%), has a diameter of 65 cm and weighs 1150 kilos. If a gravitational wave passes by the antenna, it will transmit a very small part of its energy to the ball. Gravity waves with a frequency of circa 3000 hertz will make the ball vibrate in all kinds of different ways.

Yet, these vibrations are very small, a billionth of a billionth part of a centimetre (10 -20 m), which makes them very difficult to measure. MiniGRAIL will have to attain a sensitivity good enough to detect these ultra-small vibrations. Astronomers predict that at the frequency and amplitude of such ultra-small vibrations various sources of gravitational waves can be measured, like clashes of black holes and instabilities in neutron stars.

In order to preclude false vibrations as much as possible, MiniGrail is built on vibration-free poles, and the ball is cooled down to ultra-low temperatures. At this moment the ball is 4 Kelvin, which is -269 degrees Celsius. This is as cold as it can get in the coldest corners of the universe. In a number of weeks the ball’s temperature will be decreased even more, to reach record depth, and then the scientific race will break loose: who in the world will be the first to measure gravitational waves?

The race will be between American teams, an Italian team and Frossati’s own team. Still, cooperation will be more important than competition. “You can never be sure you have measured a gravitational wave until you have compared notes with the other teams. Only if all of us, simultaneously, have a hit will we know that it was indeed a gravitational wave.”

Eppo Bruins | alfa
Further information:
http://www.nieuws.leidenuniv.nl/index.php3?m=&c=373
http://www.leidenuniv.nl

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>